Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Ta có \(\Delta_1=a^2-4\) ; \(\Delta_2=b^2-4\) ; \(\Delta_3=c^2-4\)
Do đó \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)
Vậy \(\Delta_1+\Delta_2+\Delta_3\ge0\) nên ít nhất phải có \(\Delta_1\ge0\) hoặc \(\Delta_2\ge0\) hoặc \(\Delta_3\ge0\)
(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)
Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.