Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Theo đề bài ta có:
abc + ab + a = 874
( 100a + 10b + c ) + ( 10a + b ) + a = 874
111a + 11b + c = 874 ( 1 )
Từ ( 1 ) suy ra 6 < a < 8
Vậy a = 7
Thay a = 7 vào ( 1 ) ta được:
11b + c = 874 – 777 = 97 ( 2 )
Từ ( 2 ) suy ra 7 < b < 9
Vậy b = 8
Thay b = 8 vào ( 2 ) ta được:
88 + c = 97
c = 97 – 88 = 9
Vậy a = 7, b = 8, c = 9
Theo đề bài ta có:
abc + ab + a = 874
( 100a + 10b + c ) + ( 10a + b ) + a = 874
111a + 11b + c = 874 ( 1 )
Từ ( 1 ) suy ra 6 < a < 8
Vậy a = 7
Thay a = 7 vào ( 1 ) ta được:
11b + c = 874 – 777 = 97 ( 2 )
Từ ( 2 ) suy ra 7 < b < 9
Vậy b = 8
Thay b = 8 vào ( 2 ) ta được:
88 + c = 97
c = 97 – 88 = 9
Vậy a = 7, b = 8, c = 9
Ta có:
abc + ab + a = 874
789 + 78 + 7 = 874
Giải
Theo đề bài ta có:
abc + ab + a = 874
( 100a + 10b + c ) + ( 10a + b ) + a = 874
111a + 11b + c = 874(1)
Từ (1) suy ra 6 < a < 8
Vậy a = 7
Thay a = 7 vào(1) ta được:
11b + c = 874 – 777 = 97(2)
Từ (2) suy ra 7 < b < 9
Vậy b = 8
Thay b = 8 vào (2) ta được:
88 + c = 97
c = 97 – 88 = 9
Vậy a = 7, b = 8, c = 9
Ta có
\(AB=AC\\ \Rightarrow\Delta ABC.cân.tại.A\)
Xét \(\Delta ABC\) có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà \(\Delta\)ABC cân tại A nên:
\(\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{B}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{100}{2}=50^o\)
Do \(\Delta\)ABC cân nên AB = AC và không có cạnh lớn nhất
`@` `\text {dnammv}`
`a,`
Xét `\Delta ABC:`
\(\widehat {A}+ \widehat {B}+ \widehat {C}=180^0 (\text {định lý tổng 3 góc trong 1} \Delta)\)
`90^0+ 60^0 + \hat {B}=180^0`
`-> \hat {B}=180^0-90^0-60^0=30^0`
`->`\(\widehat {A}> \widehat {B} > \widehat {C} (90^0>60^0>30^0)\)
`@` Theo định lý giữa góc và cạnh đối diện trong tam giác:
`-> \text {BC > AC > AB}`
`b,`
Xét `\Delta ABD` và `\Delta MBD`:
`\text {BD chung}`
\(\widehat {ABD}= \widehat {MBD}\) `(\text {tia phân giác}` `\hat {ABC})`
`AB = BC (g``t)`
`=> \Delta ABD = \Delta MBD (c-g-c)`
`c,` Vì `\Delta ABD = \Delta MBD (b)`
`-> \text {DA = DM (2 cạnh tương ứng)}`
`->` \(\widehat {BAD}= \widehat {BMD}\)`=90^0 (\text {2 góc tương ứng})`
Xét `\Delta ADN` và `\Delta MDC`:
`\text {DA = DM (CMT)}`
\(\widehat {ADN} = \widehat {MDC}\) `(\text {đối đỉnh})`
\(\widehat {BAD}= \widehat {BMD}\)`=90^0 (CMT)`
`=> \Delta ADN = \Delta MDC (cgv-gn)`
`-> \text {AN = MC (2 cạnh tương ứng)}`
Ta có: \(\left\{{}\begin{matrix}\text{BA = BM (gt)}\\\text{AN = MC (CMT)}\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}\text{BN = BA+AN}\\\text{BC = BM+MC}\end{matrix}\right.\)
`=> \text {BN = BC}`
Xét `\Delta BAM:`
`\text {BA = BM}`
`-> \Delta BAM` cân tại `B`
`->`\(\widehat {BAM}= \widehat {BMA}=\)\(\dfrac{180^0-\widehat{B}}{2}\) `(1)`
Xét `\Delta BNC`:
`\text {BN = BC (CMT)}`
`-> \Delta BNC` cân tại `B`
`->`\(\widehat {BNC} = \widehat {BCN}=\)\(\dfrac{180-\widehat{B}}{2}\) `(2)`
Từ `(1)` và `(2)`
`->`\(\widehat {BNC}= \widehat {BAM}\)
Mà `2` góc này nằm ở bị trí đồng vị
`-> \text {AM // NC (tính chất 2 đường thẳng //)}`
a) C = 11(a+b) là số chính phương => a+b =11=> ab thuộc {29;92;38;83;47;74;56;65}
b)1+2+3+....+bc =abc =>1+2+3+....+(bc -1) = 100a => [bc -1+1] +[bc-2+2] +..... =100a
Có bc : 2 dấu ngoặc
=> bc .bc :2 = 100a => bc2 =100.2a => 2a là số chính phương => 2a =4 thỏa mãn
=> a =2
=> bc2 =100.2a =100.4 =400 =202 => bc =20
Vậy abc =220
c) Không hiểu đề
Theo định lí Py-ta-go , ta có:
AB2+AC2=302=900
Ta cũng có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\Rightarrow\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{900}{25}=36\)
Vì \(\frac{AB^2}{9}=36\Rightarrow AB=\sqrt{36\cdot9}=18\)
Vậy AB=18
\(abc+ab+a=874\Leftrightarrow a.100+b.10+c+a.10+b+a=874\Leftrightarrow111a+11b+c=874\Rightarrow a=7\Rightarrow777+11b+c=874\Leftrightarrow11b+c=97\Rightarrow b=8\Rightarrow88+c=97\Leftrightarrow c=9\Rightarrow abc=789\)