Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do abc = 1 mà a + b + c = 1/a + 1/b + 1/c
=> a + b + c = ab + bc + ca
(a-1)(b-1)(c-1) = abc - ab - bc - ca + a + b + c - 1 = 0
=> P = (a-1)(b-1)(c-1)(a^28 +...+1)(b^2+b+1)(c^2017+...+1) = 0
\(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)
\(\Leftrightarrow\frac{2019a^4+2018b^4}{2018\cdot2019}=\frac{a^2+b^2}{2018+2019}\)
\(\Leftrightarrow\left(2018+2019\right)\left(2019a^4+2018b^4\right)=2018\cdot2019\left(a^2+b^2\right)\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4+2018\cdot2019\cdot a^4+2018\cdot2019b^4=2018\cdot2019\cdot a^2+2018\cdot2019\cdot b^2\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4=2018\cdot2019\cdot a^2\left(1-a^2\right)+2018\cdot2019\cdot b^2\left(1-b^2\right)\)
\(\Leftrightarrow\left(2019a^2\right)^2+\left(2018b^2\right)^2=2\cdot2018\cdot2019\cdot a^2\cdot b^2\)
\(\Leftrightarrow\left(2019a^2-2018b^2\right)=0\)
\(\Leftrightarrow2019a^2=2018b^2\Leftrightarrow\frac{a^2}{2018}=\frac{b^2}{2019}=\frac{a^2+b^2}{2018+2019}=\frac{1}{4037}\)
\(\Rightarrow\frac{a^{2018}}{2018^{10009}}=\frac{b^{2018}}{2019^{1009}}=\frac{1}{4037^{1009}}\)
\(\Rightarrow P=\frac{2}{4037^{1009}}\)
Ta có:
\(\frac{1}{1+a}+\frac{2017}{2017+b}+\frac{2018}{2018+c}\le1\)
\(\Leftrightarrow\frac{a}{1+a}\ge\frac{2017}{2017+b}+\frac{2018}{2018+c}\ge2\sqrt{\frac{2017.2018}{\left(2017+b\right)\left(2018+c\right)}}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{2017+b}\ge2\sqrt{\frac{2018}{\left(1+a\right)\left(2018+c\right)}}\left(2\right)\\\frac{c}{2018+c}\ge2\sqrt{\frac{2017}{\left(1+a\right)\left(2017+b\right)}}\left(3\right)\end{cases}}\)
Lấy (1), (2), (3) nhân vế theo vế rút gọi ta được
\(abc\ge2\sqrt{2017.2018}.2.\sqrt{2018}.2.\sqrt{2017}=8.2017.2018\)
Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:
\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)
Với n = 1 thì nó đúng.
Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)
Từ (1) và (2) cái ta cần chứng minh trở thành:
\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)
\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)
Vậy ta có ĐPCM.
Áp dụng và bài toán ta được
\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)
\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)