K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Tính M = ab + bc + ca/ a2 + b2 + c2

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}=\frac{1}{c}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}=\frac{1}{a}\end{cases}}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)

8 tháng 12 2019

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)

=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)

=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

=> \(a=b=c\)

Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)

 Vậy \(M=1\)

2 tháng 1 2020

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath

2 tháng 1 2020

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\)

\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{a}{ac}+\frac{c}{ac}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{b}+\frac{1}{a}\end{cases}}\)            \(\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\\\frac{1}{c}=\frac{1}{b}\end{cases}}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

\(\Rightarrow a=b=c\)

Khi đó : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)

Vậy \(M=1\)

26 tháng 2 2020

Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)

Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)

26 tháng 2 2020

\(\text{Một cách khác}\)

\(\text{Ta có:}\)

\(\frac{ab}{a+b}=\frac{bc}{b+c}\)

\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)

\(\Leftrightarrow ab^2+abc=abc+b^2c\)

\(\Leftrightarrow a=c\left(1\right)\)

\(\frac{bc}{b+c}=\frac{ca}{a+c}\)

\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)

\(\Rightarrow abc+bc^2=abc+c^2a\)

\(\Rightarrow b=a\left(2\right)\)

\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)

\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)

23 tháng 11 2020

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ac}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\Rightarrow M=1\)

8 tháng 10 2016

dễ mà

a, tách ra (đừng có ghi từ này vào nha)

(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2

Vì a^2b^2+b^2c^2+c^2a^2=a^2b^2+b^2c^2+c^2a^2

=>(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2

8 tháng 10 2016

b,

Ta có :a^4+b^4+c^4=2.(ab+bc+ca)^2

mà 2.(ab+bc+ca)^2=2.(ab+bc+ca)^2

=>a^4+b^4+c^4=2.(ab+bc+ca)^2

banh

1 tháng 4 2016

Ai biết được, tớ mới học lớp 5.

2 tháng 4 2016

lớp 5 nói làm gì,anh????

16 tháng 6 2016

Yêu cầu là j?