Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
a) x 2 - 3 2 x + 9 16 . b) 9 t 2 + 6t + 1.
c) 1 9 − 9 a 2 d) a 4 – 4 a 2 + 4.
a) a ≠ ± 4 3 b) a ≠ 3
c) a ≠ 0, a ≠ - 3 2 d) a ≠ 0, a ≠ 1, a ≠ 3
a) Gợi ý: a 2 - 7a - 8 = (a + 1) (a - 8) và a 2 - 5a + 6 = (a + 2) (a - 3).
Tính được kết quả là: a − 8 a + 2
b) 2 b 2 b + 3
\(\dfrac{a+b}{3a-b}+\dfrac{1}{a+b}.\left(\dfrac{a^2-b^2}{3a-b}\right)\)
ĐKXĐ: \(a;b\ne0\)
\(\dfrac{a+b}{3a-b}+\dfrac{1}{a+b}.\dfrac{\left(a-b\right)\left(a+b\right)}{3a-b}\)
\(=\dfrac{a+b}{3a-b}+\dfrac{a-b}{3a-b}\)
\(=\dfrac{a+b-a+b}{3a-b}=\dfrac{2b}{3a-b}\)
Học tốt nha<3
thank you