Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
Sử dụng:
\(A^3+B^3+C^3-3ABC=\left(A+B+C\right)\left(A^2+B^2+C^2-AB-BC-AC\right)\) (1)
Áp dụng vào bài:
\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)\)
\(=\left(a-1+b-2+c-3\right)\)[ \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\)
\(+\left(a-1\right)\left(b-2\right)+\left(a-1\right)\left(c-3\right)+\left(b-2\right)\left(c-3\right)\)]
<=> \(0-3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
( vì \(a-1+b-2+c-3=a+b+c-6=6-6=0\))
<=> \(\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)
<=> a = 1 hoặc b = 2 hoặc c = 3.
Không mất tính tổng quát: g/s : a = 1
Khi đó: b + c =5
Ta có: \(T=\left(b-2\right)^{2n+1}+\left(c-3\right)^{2n+1}\)
\(=\left(b-2+c-3\right).A\)
\(=\left(b+c-5\right).A\)
\(=0.A=0\)
Với \(A=\left(b-2\right)^{2n}-\left(b-2\right)^{2n-1}\left(c-3\right)+\left(b-2\right)^{2n-2}\left(c-3\right)^2-...+\left(c-3\right)^{2n}\)
Tương tự b = 2; c= 3 thì T = 0.
Vậy T = 0.