Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa: CMR \(\dfrac{a^3+c^3+m^3}{b^3+d^3+n^3}=\left(\dfrac{a+c-m}{b+d-n}\right)^3\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{m}{n}=k\Rightarrow a=kb;c=kd;m=kn\)
\(\dfrac{a^3+c^3+m^3}{b^3+d^3+n^3}=\dfrac{k^3b^3+k^3d^3+k^3n^3}{b^3+d^3+n^3}=\dfrac{k^3\left(b^3+d^3+n^3\right)}{b^3+d^3+n^3}=k^3\)
\(\left(\dfrac{a+c-m}{b+d-m}\right)^3=\left(\dfrac{kb+kd-kn}{b+d-n}\right)^3=\left(\dfrac{k\left(b+d-n\right)}{b+d-n}\right)^3=k^3\)
\(\Rightarrow\dfrac{a^3+c^3+m^3}{b^3+d^3+n^3}=\left(\dfrac{a+c-m}{b+d-n}\right)^3\left(=k^3\right)\)
a) Sửa đề CMR : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{vì }\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\right)\)
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{đpcm}\right)\)
b) |17x - 5| - |17x + 5| = 0
=> |17x - 5| = |17x + 5|
=> \(\orbr{\begin{cases}17x-5=17x+5\\17x-5=-17x-5\end{cases}}\Rightarrow\orbr{\begin{cases}0x=10\\34x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0 là giá trị cần tìm
Theo đề ta có:
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a,b,c khác 0 và b khác c.
CMR \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
=> \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
=> \(\dfrac{1}{c}:\dfrac{1}{2}=\dfrac{1}{a}+\dfrac{1}{b}\Rightarrow\dfrac{1}{c}.\dfrac{2}{1}\)
= \(\dfrac{\left(a+b\right)}{ab}\Rightarrow\dfrac{2}{c}=\dfrac{\left(a+b\right)}{ab}\)
=> 2ab=ac+bc (1)
Mà \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
=> \(a.\left(c-b\right)=b.\left(a-c\right)\)
=> ac-ab= ab-bc
=> 2ab+ ac + bc (2)
Từ (1) và (2) ta suy ra được điều cần CM là;
\(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Ta có
\(a^2+b^2+c^2+d^2+a+b+c+d=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số tự nhiên liên tiếp nên các tích trên đều chia hết cho 2
\(\Rightarrow a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)⋮2\)
\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)⋮2\)
Ta có
\(a^2+c^2=b^2+d^2\Rightarrow\left(a^2+b^2+c^2+d^2\right)=2\left(b^2+d^2\right)⋮2\)
\(\Rightarrow a^2+b^2+c^2+d^2⋮2\)
\(\Rightarrow a+b+c+d⋮2\)
=> a+b+c+d là hợp số
Câu hỏi của Nguyễn Nguyên Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
Từ \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)(1)
Từ \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)(2)
Từ (1) và (2) \(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}=\left(\frac{a}{b}\right)^3\left(đpcm\right)\)