Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính trừ bt nha bạn vế thương thì cũng tĩnh ra xong mới tính nha
a, \(x\) + \(\dfrac{1}{4}\) - \(\dfrac{3}{8}\) = \(\dfrac{7}{12}\)
\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{7}{12}\)
\(x\) = \(\dfrac{7}{12}\) + \(\dfrac{1}{8}\)
\(x\) = \(\dfrac{17}{24}\)
\(\frac{7}{8}>\frac{7}{9}>\frac{7}{10}>\frac{7}{11}>\frac{7}{15}\)
Tính :
\(a,\frac{1}{4}+\frac{3}{8}+\frac{5}{16}=\frac{4+6+5}{16}=\frac{15}{16}\)
\(b,\frac{3}{5}-\frac{1}{3}-\frac{1}{6}=\frac{18-10-5}{30}=\frac{3}{30}=\frac{1}{10}\)
\(c,\frac{4}{7}\times\frac{5}{8}\times\frac{7}{12}=\frac{5}{14}\times\frac{7}{12}=\frac{5}{24}\)
\(d,\frac{25}{28}:\frac{15}{14}\times\frac{6}{7}=\frac{25\times14\times6}{28\times15\times7}=\frac{5}{7}\)
12/21:3/7=4/3
4/9x3/8=1/6
4/3x9/20=3/5
5/12:25/24=2/5
bài được viết thành phân số tối giản
Có thể thấy A có các số chia hết cho 3 hoặc chia 3 dư 1. B không chia hết cho 3 vì luôn có cùng số dư 2. C là các số chia cho 3 dư 1 hoặc chia hết cho 3. 1000 chia 3 dư1 nên có thể ở hàng A hoặc C. Số liền trước của 1000 là 999 chia hết cho 3 không thể ở B, mà số liền sau 1000 là 1001 chia 3 dư 1 nên chắc chắn ở hàng B. Vậy 999 ở hàng C để 1000 ở hàng A..
Có thể thấy A có các số chia hết cho 3 hoặc chia 3 dư 1.
B không chia hết cho 3 vì luôn có cùng số dư 2.
C là các số chia cho 3 dư 1 hoặc chia hết cho 3.
1000 chia 3 dư1 nên có thể ở hàng A hoặc C.
Số liền trước của 1000 là 999 chia hết cho 3 không thể ở B, mà số liền sau 1000 là 1001 chia 3 dư 1 nên chắc chắn ở hàng B.
Vậy 999 ở hàng C để 1000 ở hàng A..
\(a,\dfrac{7}{9}\times\dfrac{3}{14}:\dfrac{5}{8}=\dfrac{7}{9}\times\dfrac{3}{14}\times\dfrac{8}{5}=\dfrac{4}{15}\)
\(b,\dfrac{3}{5}\times\dfrac{4}{21}\times\dfrac{25}{3}=\dfrac{20}{21}\)
\(c,\dfrac{15}{16}:\dfrac{5}{8}\times\dfrac{3}{4}=\dfrac{15}{16}\times\dfrac{8}{5}\times\dfrac{3}{4}=\dfrac{9}{8}\)
\(d,\dfrac{21}{4}\times\dfrac{16}{14}\times\dfrac{1}{2}\times\dfrac{8}{3}=8\)