K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2015

\(A=5+5^2+5^3+...+ 5^{96}\)

\(5A=5^2+5^3+5^4+...+5^{100}\)

\(5A-A=\left(5^2+5^3+5^4+...+5^{100}\right)-\left(5+5^2+5^3+ ...+5^{99}\right)\)
\(4A=5^{100}-5 \)
\(A=\frac{5^{100}-5}{4}\)

 

23 tháng 10 2020

a) \(S=5+5^2+5^3+5^4+.......+5^{96}\)

\(\Rightarrow5S=5^2+5^3+5^4+5^5+.........+5^{97}\)

\(\Rightarrow5S-S=5^{97}-5\)

\(\Rightarrow4S=5^{97}-5\)\(\Rightarrow S=\frac{5^{97}-5}{4}\)

b) \(S=5+5^2+5^3+5^4+..........+5^{96}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+.....+\left(5^{93}+5^{96}\right)\)

\(=5\left(1+5^3\right)+5^2.\left(1+5^3\right)+5^3.\left(1+5^3\right)+......+5^{93}.\left(1+5^3\right)\)

\(=5\left(1+125\right)+5^2.\left(1+125\right)+5^3.\left(1+125\right)+......+5^{93}.\left(1+5^3\right)\)

\(=5.126+5^2.126+5^3.126+......+5^{93}.126\)

\(=126.\left(5+5^2+5^3+.........+5^{93}\right)⋮126\)( đpcm )

25 tháng 11 2015

b.(5+5^2+5^3+5^4+5^5+5^6)+......+(5^91+58^92+5^93+5^94+58^95+58^96)
=5(1+5+5^2+563+5^4+5^5)+..........+5^91(1+5+5^2+563+5^4+5^5)
=chia het cho 126                                      chia het cho 126
suy ra S chia het cho 126

c.  Do S là tổng các lũy thừa có cơ số là 5.
Cho nên mỗi lũy thừa đều tận cùng là 5.
Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0. 

 

9 tháng 1 2016

5S = 5^2+5^3 + 5^4+.....+5^98

5S - S = (5^2-5^2)+(5^3-5^3) + ... + (5^97 - 5^97) + 5^98-5

4S = 5^98-5

Vậy S = \(\frac{5^{98}-5}{4}\)

 

a/ Ta có:S = 5+5^2+5^3+5^4+......+5^96+5^97

=>5S=5^2+5^3+5^4+....+5^97+5^98

=>5S-S=5^98-5

=>4S=5^98-5

=>S=5^98-5/4

 

5 tháng 10 2018

Các bài trên gần giống nhau nên mình làm một bài thôi nhé!

a) \(B=1+7^1+7^2+...+7^{119}\)

\(2B=7^1+7^2+7^3+...+7^{120}\)

\(\Rightarrow2B-B=B=7^{120}-1\) 

Ta có:\(B=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{118}+7^{119}\right)\)

\(=\left(1+7\right)+7^2\left(1+7\right)+...+7^{118}\left(1+7\right)\)

\(=8\left(1+7^2+...+7^{118}\right)⋮8^{\left(đpcm\right)}\)

5 tháng 10 2018

\(B=1+7^1+7^2+7^3+.......+7^{119}\)

\(\Rightarrow7B=7+7^2+7^3+7^4+.....+7^{120}\)

\(\Rightarrow7B-B=\left(7+7^2+7^3+7^4+......+7^{120}\right)-\left(1+7^1+7^2+7^3+.......+7^{119}\right)\)

\(\Rightarrow6B=7^{120}-1\)

\(\Rightarrow B=\frac{7^{120}-1}{6}\)

B chia hết cho 8:

\(B=\left(1+7^1\right)+\left(7^2+7^3\right)+........+\left(7^{118}+7^{119}\right)\)

\(\Rightarrow B=\left(1+7^1\right)+7^2\left(1+7^1\right)+.......+7^{118}\left(1+7^1\right)\)

\(\Rightarrow B=8+7^2.8+........+7^{118}.8\)

\(\Rightarrow B=8\left(1+7^2+.......+7^{118}\right)⋮8\left(đpcm\right)\)

Các phần sau bạn làm tương tự

Chú ý: Khi muốn chứng minh chia hết bạn phải nhóm các số hạng sao cho mỗi cặp chia hết với số cho trước

10 tháng 12 2015

S=5+5^2+5^3+....+5^96= 
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96 
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)= 
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126 

 

10 tháng 12 2015

Bạn gộp 6 số lại là được 

14 tháng 2 2016

b, ( 5^1 + 5^4 ) + ( 5^2 + 5^5 ) + .... + ( 5^2003 + 5^2006 ) 
= 5( 1 + 5^3 ) + 5^2( 1 + 5^3 ) + .... + 5^2003( 1 + 5^3 ) 
= 5 . 126 + 5^2 . 126 + .... + 5^2003 . 126 
= 126 ( 5 + .... + 5^2003 ) 
=> chia hết cho 126

14 tháng 2 2016

a ) S = 5 + 52 + .... + 52006
5S = 52 + 53 + ..... + 52007
4S = 5S - S = 52007 - 5 
=> S = \(\frac{5^{2007}-5}{4}\)
b thì bạn gộp lại nhé , nếu k giải đk ib cho mình