K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

A=1+1+3+3^2+3^3+...+3^2018

A=1+(1+3+3^2+3^3+...+3^2018)

Đặt:

B=1+3+3^2+3^3+...+3^2018

3B=3.(1+3+3^2+3^3+...+3^2018)

3B=3+3^2+3^3+...+3^2018+3^2019

3B=1+3^2+3^3+...+3^2018+3^2019-1

3B=B+3^2019-1

3B-B=B+3^2019-1-B

2B=3^2019-1

=>2A=2B+1

=3^2019-1+1

=3^2019

2A-1

=3^2019-1

=3^n-1

3^n-1=3^2019-1

=>n=2019

Vậy n=2019

22 tháng 10 2023

nhanh tích cho nhee

22 tháng 10 2023

tui làm b nha do a không biết làm

A=5+32+33+...+32018

3A=15+33+34+...+32019

3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)

2A=32019+15-(5+32)

2A=32019+15-14

2A=32019+1

2A-1=32019+1-1

2A-1=32019

vậy n = 2019

 

29 tháng 11 2019

Ta có : A = 5 + 32 + 33 + ... + 32018

<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018

=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019 

Lấy 3A trừ A ta có : 

3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)

    2A  = 32019 + 3 - 2

    2A  = 32019 + 1

    2A - 1 = 32019

<=> 3n = 32019

=> n = 2019

Vậy n = 2019

29 tháng 11 2019

thank you

DD
12 tháng 10 2021

\(A=5+3^2+3^3+...+3^{2018}\)

\(3A=15+3^3+3^4+...+3^{2019}\)

\(3A-A=\left(15+3^3+3^4+...+3^{2019}\right)-\left(5+3^2+3^3+...+3^{2018}\right)\)

\(2A=1+3^{2019}\)

\(2A-1=3^{2019}\)

Suy ra \(n=2019\).

14 tháng 12 2022

A= 3 + 32 + 33 + ... + 3100

3A = 32 + 33 + 34 + ... + 3101

3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

2A = 3101 - 3

Ta có: 2A + 3        = 34n+1

       = 3101 - 3 + 1 = 34n+1

       = 3101               = 34n+1

=> 4n + 1 =101

      4n = 101 - 1

     4n = 100

       n = 100 : 4

       n = 25

14 tháng 12 2022

         A   = 3 + 32 + 33 + 34 +......+ 3100

        3A =       32 + 33 + 34+.........+ 3100+ 3101

  3A -  A =        3101 - 3

       2A  =         3101 - 3 

   2A + 3 = 3101 - 3 + 3 = 3101

    2A + 3  = 34n+1 ⇔ 3101 = 34n+1

                                   101 = 4n + 1

                                     4n = 101  - 1

                                     4n  = 100

                                       n = 100 : 4

                                       n = 25

16 tháng 8 2020

Ta có A = 3 + 32 + 33 + ... 32018

=> 3A = 32 + 33 + 34 + .... + 32019

Khi đó 3A - A = (32 + 33 + 34 + .... + 32019) - (3 + 32 + 33 + ... 32018)

         =>   2A = 32019 - 3

        =>       A = \(\frac{3^{2019}-3}{2}\)

b) Bạn xem lại đề đi ak

16 tháng 8 2020

Sửa đề : A = 1 + 3 + 32 + 33 + ... + 32017 + 32018

A = 1 + 3 + 32 + 33 + ... + 32017 + 32018

3A = 3( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )

     = 3 + 32 + 33 + ... + 32018 + 32019

3A - A = 2A

= 3 + 32 + 33 + ... + 32018 + 32019 - ( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )

= 3 + 32 + 33 + ... + 32018 + 32019 - 1 - 3 - 32 - 33 - ... - 32017 - 32018

= 32019 - 1

2A + 1 = 3n ( sửa - thành + )

<=> 32019 - 1 + 1 = 3n

<=> 32019 = 3n

<=> n = 2019

Sai thì cho mình xin lỗi ạ :)

14 tháng 3 2018

Giúp mik vs nha