Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm b nha do a không biết làm
A=5+32+33+...+32018
3A=15+33+34+...+32019
3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)
2A=32019+15-(5+32)
2A=32019+15-14
2A=32019+1
2A-1=32019+1-1
2A-1=32019
vậy n = 2019
Ta có : A = 5 + 32 + 33 + ... + 32018
<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018
=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019
Lấy 3A trừ A ta có :
3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)
2A = 32019 + 3 - 2
2A = 32019 + 1
2A - 1 = 32019
<=> 3n = 32019
=> n = 2019
Vậy n = 2019
\(A=5+3^2+3^3+...+3^{2018}\)
\(3A=15+3^3+3^4+...+3^{2019}\)
\(3A-A=\left(15+3^3+3^4+...+3^{2019}\right)-\left(5+3^2+3^3+...+3^{2018}\right)\)
\(2A=1+3^{2019}\)
\(2A-1=3^{2019}\)
Suy ra \(n=2019\).
A= 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)
2A = 3101 - 3
Ta có: 2A + 3 = 34n+1
= 3101 - 3 + 1 = 34n+1
= 3101 = 34n+1
=> 4n + 1 =101
4n = 101 - 1
4n = 100
n = 100 : 4
n = 25
A = 3 + 32 + 33 + 34 +......+ 3100
3A = 32 + 33 + 34+.........+ 3100+ 3101
3A - A = 3101 - 3
2A = 3101 - 3
2A + 3 = 3101 - 3 + 3 = 3101
2A + 3 = 34n+1 ⇔ 3101 = 34n+1
101 = 4n + 1
4n = 101 - 1
4n = 100
n = 100 : 4
n = 25
Ta có A = 3 + 32 + 33 + ... 32018
=> 3A = 32 + 33 + 34 + .... + 32019
Khi đó 3A - A = (32 + 33 + 34 + .... + 32019) - (3 + 32 + 33 + ... 32018)
=> 2A = 32019 - 3
=> A = \(\frac{3^{2019}-3}{2}\)
b) Bạn xem lại đề đi ak
Sửa đề : A = 1 + 3 + 32 + 33 + ... + 32017 + 32018
A = 1 + 3 + 32 + 33 + ... + 32017 + 32018
3A = 3( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )
= 3 + 32 + 33 + ... + 32018 + 32019
3A - A = 2A
= 3 + 32 + 33 + ... + 32018 + 32019 - ( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )
= 3 + 32 + 33 + ... + 32018 + 32019 - 1 - 3 - 32 - 33 - ... - 32017 - 32018
= 32019 - 1
2A + 1 = 3n ( sửa - thành + )
<=> 32019 - 1 + 1 = 3n
<=> 32019 = 3n
<=> n = 2019
Sai thì cho mình xin lỗi ạ :)
A=1+1+3+3^2+3^3+...+3^2018
A=1+(1+3+3^2+3^3+...+3^2018)
Đặt:
B=1+3+3^2+3^3+...+3^2018
3B=3.(1+3+3^2+3^3+...+3^2018)
3B=3+3^2+3^3+...+3^2018+3^2019
3B=1+3^2+3^3+...+3^2018+3^2019-1
3B=B+3^2019-1
3B-B=B+3^2019-1-B
2B=3^2019-1
=>2A=2B+1
=3^2019-1+1
=3^2019
2A-1
=3^2019-1
=3^n-1
3^n-1=3^2019-1
=>n=2019
Vậy n=2019