Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có :
\(A=\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+............+\dfrac{1}{4^{100}}\)
\(4A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+\dfrac{1}{4^3}+..........+\dfrac{1}{4^{99}}\)
\(4A-A=\left(1+\dfrac{1}{4}+.......+\dfrac{1}{4^{99}}\right)-\left(\dfrac{1}{4}+\dfrac{1}{4^2}+.....+\dfrac{1}{4^{100}}\right)\)
\(3A=1-\dfrac{1}{4^{100}}\)
\(\Rightarrow A=\dfrac{1-\dfrac{1}{4^{100}}}{3}\)
~ Chúc bn học tốt ~
Ta có công thức tổng quát như sau:
\(A=n^k+n^{k+1}+n^{k+2}+...+n^{k+x}\Rightarrow A=\dfrac{n^{k+x+1}-n^k}{n-1}\)
Áp dụng ta có:
\(A=1+4+4^2+...+4^6=\dfrac{4^7-1}{3}\)
\(\Rightarrow B-3A=4^7-3\cdot\dfrac{4^7-1}{3}=1\)
______
\(A=2^0+2^1+...+2^{2008}=2^{2009}-1\)
\(\Rightarrow B-A=2^{2009}-2^{2009}+1=1\)
_____
\(A=1+3+3^2+....+3^{2006}=\dfrac{3^{2007}-1}{2}\)
\(\Rightarrow B-2A=3^{2007}-2\cdot\dfrac{3^{2007}-1}{2}=1\)
a, A = 4 + 4^2 + 4^3 + ... + 4^n
=> 4A = 4.(4 + 4^2 + 4^3 + ... + 4^n)
=> 4A = 4^2 + 4^3 + 4^4 + ... + 4^n+1
=> 3A = 4A - A = (4^2 + 4^3 + 4^4 + ... + 4^n+1) - ( 4 + 4^2 + 4^3 + ... + 4^n)
=> 3A = 4^n+1 - 4
=> A = \(\frac{4^{n+1}-4}{3}\)
Vậy A = ..................
b, B = 1 + 3 + 3^2 + ... + 3^100
=> 3B = 3.(1 + 3 + 3^2 + ... + 3^100)
=> 3B = 3 + 3^2 + 3^3 + ... + 3^101
=> 2B = 3B - B =(3 + 3^2 + 3^3 + ... + 3^101) -(1 + 3 + 3^2 + ... + 3^100)
=> 2B = 3^101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
Vậy B = ......................
A = 4 + 4^2 + 4^3 + ... + 4^n
4A = 4^2 + 4^3 + 4^4 + ... + 4^n+1
4A - A = ( 4^2 + 4^3 + 4^4 + ... + 4^n+1 ) - ( 4 + 4^2 + 4^3 +...+4^n)
3A = 4^n+1 - 4
A = 4^n+1 - 4/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
Bài 2:
a: =>3/4x=-3/5-1/2=-11/10
\(\Leftrightarrow x=\dfrac{-11}{10}:\dfrac{3}{4}=\dfrac{-11}{10}\cdot\dfrac{4}{3}=-\dfrac{44}{30}=-\dfrac{22}{15}\)
b: \(\Leftrightarrow x+\dfrac{3}{4}x=\dfrac{1}{3}+\dfrac{5}{4}=\dfrac{19}{12}\)
=>7/4x=19/12
=>x=19/21
c: \(\Leftrightarrow-\dfrac{2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)
=>-4/3x=-1/3-1/6=-1/2
=>x=1/2:4/3=1/2x3/4=3/8
Bài 1
\(\dfrac{1}{7}:\dfrac{5}{17}-\dfrac{3}{2}.\left(\dfrac{1}{6}-\dfrac{7}{12}\right)\)
\(\dfrac{1}{7}.\dfrac{17}{5}-\dfrac{3}{2}.\left(-\dfrac{5}{12}\right)\)
\(\dfrac{17}{35}-\left(-\dfrac{5}{8}\right)\)
\(\dfrac{17}{35}+\dfrac{5}{8}\)
\(\dfrac{311}{280}\)
a\()\) 16/9 +3/5
=107/45
b\()\) 4/13--2/17
=51/221--26/221
=77/221
c\()\) -3/2+4/5
=-15/10+8/10
=-7/10
d\()\) 3/-4-1/4
=-1
e\()\) -1/5.5/7
=-1/7
f\()\) 7/8.64/49
=8/7
g\()\) 3/4.15/24
=15/32
\(A=4+4^2+4^3+...+4^{19}+4^{20}\)
\(4A=4\cdot\left(4+4^2+4^3+...+4^{20}\right)\)
\(4A=4^2+4^3+...+4^{21}\)
\(4A-A=4^2+4^3+4^4+...+4^{21}-4-4^2-4^3-...-4^{20}\)
\(3A=4^{21}-4\)
\(A=\dfrac{4^{21}-4}{3}\)
____________
\(B=1+3+3^2+...+3^{99}\)
\(3B=3\cdot\left(1+3+3^2+....+3^{99}\right)\)
\(3B=3+3^2+3^3+....+3^{100}\)
\(3B-B=\left(3+3^2+3^3+....+3^{100}\right)-\left(1+3+3^2+...+3^{99}\right)\)
\(2B=3^{100}-1\)
\(B=\dfrac{3^{100}-1}{2}\)
Các bn giúp mk với