K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

A = 4 + 3^2 + 3^3 +... + 3^99

A = ( 4 + 3^2 + 3^3 ) +....+ ( 3^97 + 3^98 + 3^99 )

A = ( 1 + 3^2 +3^3 ) +...+ 3^97.( 1+ 3^2 + 3^3 )

A =          40            + ....+ 3^97.40

A = 40 + ( 3^4 +...+3^97 ) .40

Vi 40 \(⋮\)40 nen 40 + ( 3^4 +...+3^97 ) \(⋮\)40

hay A \(⋮\)40

28 tháng 12 2018

ko bt ddug hay sai đâu làm đại!!!chỗ 2 ngoặc tròn là ngoặc vuông r đến ngoặc tròn

ta có A=4+3^2+3^3+3^4+.......+3^99

=>A=4+(3^2+3^3+3^4+3^5)+....+(3^96+3^97+3^98+3^99)

=>A=4+(3.(3+3^2+3^3+3^4))+....+(3^95.(3+3^2+3^3+3^4))

=>A=4+(3.120)+...+(3.120)

vì 120=40.3 mà số nào nhân với 40 thì số đó chia hết cho 40

vậy A chia hết cho 40(dpcm)

23 tháng 10 2023

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

23 tháng 10 2023

câu b đâu bạn ?

 

31 tháng 3 2016

Nếu đúng là zậy thì mk biết làm.

A = 3 + 32 + 33 + ...  + 32004

A = (  3 + 32 + 3+ 34 ) + ... + ( 32001 + 32002 + 32003 + 32004 )

A = 3( 1 + 3 + 32 + 33 ) + ... + 32001( 1 + 3 + 32 + 39 )

A = 3.40 + ... + 32001.40

A = ( 3 + 35 + ...  32001) . 40

=> A chia hết cho 40

31 tháng 3 2016

A = 3 + 32 + 33 +34 + ... + 32004 phải ko? 

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

24 tháng 11 2021

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\\ A=3\cdot4+3^3\cdot4+...+3^{89}\cdot4\\ A=4\left(3+3^3+...+3^{89}\right)⋮4\)

24 tháng 11 2021

cảm ơn bạn

13 tháng 5 2018

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

24 tháng 7 2023

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

DD
13 tháng 10 2021

\(B=3+3^2+3^3+...+3^{120}\)

Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).

\(B=3+3^2+3^3+...+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{119}\right)⋮4\)

\(B=3+3^2+3^3+...+3^{120}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{118}\right)⋮13\)

DD
21 tháng 10 2021

a) \(B\)là tổng các số hạng chia hết cho \(3\)nên chia hết cho \(3\).

b) \(B=3+3^2+...+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{119}\right)⋮4\)

c) \(B=3+3^2+...+3^{120}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)⋮13\)