Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x-2x=-11-9
=>x=-20
c: \(\Leftrightarrow\left(2x+3\right)\left(x^2+3\right)=2\left(2x+3\right)\)
=>2x+3=0
hay x=-3/2
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn. Viết ntn nhìn rất khó đọc
1: =>x-3+3x-9-2(3-x)=60
=>4x-12-6+2x=60
=>6x-18=60
=>6x=78
=>x=13
2: ĐKXĐ: x<>-1; x<>3
a)\(x\in R\)
b)\(x\ne1\)
c) \(x\notin\left\{1;2\right\}\)
d) \(x\notin\left\{3;-3\right\}\)
e) \(x\ne1\)
f) \(x\notin\left\{2;3\right\}\)
1) \(\dfrac{5-x}{x^2-3x}=\dfrac{5-x}{x\left(x-3\right)}\left(đk:x\ne0,x\ne3\right)\)
2) \(\dfrac{3x}{2x+3}\left(đk:x\ne-\dfrac{3}{2}\right)\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
a/ ĐKXĐ : \(x\ne0,3,1\)
\(P=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{\left(x-3\right)^2-x^2+9}{x\left(x-3\right)}.\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}.\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}.\dfrac{x}{2\left(x-1\right)}=-\dfrac{3}{x-1}\)
Vậy....
a.
(x^2-4) / (9x^2- 16)
để phân thức được xác định khi chỉ khi 9x^2 khác 16
hay x^2 khác 16/9 suy ra x khác ±4/3
b.
(2x-1) / (x^2 -4x +4)
= (2x -1)/(x - 2)^2
để phân thức được xác định khi chỉ khi (x - 2)^2 khác 0
hay x khác 2
c.
(x^2 -4) / (x^2+1)
vì x^2 >= 0 với mọi x
suy ra x^2 + 1 >= 1 > 0 với mọi x
suy ra phân thức xác định với mọi x thuộc R
`a,ĐKXĐ:x-4 ne 0,2x+2 ne 0`
`<=>x ne 4,x me -1`
`b,ĐKXĐ:4x^2-25 ne 0`
`<=>(2x-5)(2x+5) ne 0`
`<=>x ne +-5/2`
`c,ĐKXĐ:8x^3+27 ne 0`
`<=>8x^3 ne -27`
`<=>2x ne -3`
`<=>x ne -3/2`
`d,2x+2 ne 0,4y^2-9 ne 0`
`<=>2x ne -2,(2y-3)(2y+3) ne 0`
`<=>x ne -1,y ne +-3/2`
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{2};-\dfrac{5}{2}\right\}\)
c) ĐKXĐ: \(x\ne-\dfrac{3}{2}\)
d) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\notin\left\{\dfrac{3}{2};-\dfrac{3}{2}\right\}\end{matrix}\right.\)
a: 3x+9=2x-11
=>3x-2x=-11-9
=>x=-20
b: \(\dfrac{2x-3}{5}-2=\dfrac{2-x}{4}\)
=>4(2x-3)-20=5(2-x)
=>8x-12-20=10-5x
=>8x-32=10-5x
=>13x=42
hay x=42/13