K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021
Thiếu thông tin nha bn
17 tháng 9 2016

a2-1>a2-4>a2-7>a2-10 

biểu thức A=(a2-1)(a2-4)(a2-7)(a2-10) là tích 4 số <0 nên phải có 1 số<0 hoặc 3 số <0

TH1. a2-10 <0 SUY RA A=0,1,2,3,-1,-2,-3

TH2.a2-10<a2-7<a2-4<0 SUY RA A=0,1,-1

27 tháng 3 2017

Tim cac so nguyen a sao cho

(a2-1)(a2-4)(a2-7)(a2-10)<0

19 tháng 7 2018

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

Từ (1) và (2) => đpcm

b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)

Từ (1) và (2) => đpcm

20 tháng 8 2020

a) \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)

b) \(\frac{2}{a\left(a+1\right)\left(a+2\right)}=\frac{\left(a+2\right)-a}{a\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(=\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)

20 tháng 8 2020

a, Ta có : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{a+1-a}{a\left(a+1\right)}\)

\(VT=\frac{1}{a\left(a+1\right)}\left(đpcm\right)\)

b, Ta có : \(\frac{1}{a\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}=\frac{a+2}{a\left(a+1\right)\left(a+2\right)}-\frac{a}{a\left(a+1\right)\left(a+2\right)}\)

\(VT=\frac{2}{a\left(a+1\right)\left(a+2\right)}\left(đpcm\right)\)

27 tháng 6 2016

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\Rightarrow\left(a+2\right)\left(b-3\right)=\left(b+3\right)\left(a-2\right)\Rightarrow ab+2b-3a-6=ab+3a-2b-6.\)

\(\Rightarrow6a=4b\Rightarrow3a=2b\Rightarrow\frac{a}{2}=\frac{b}{3}\)đpcm

27 tháng 6 2016

thanks bạn nhiều nha

2 tháng 7 2019

\(a,a\left(1-b\right)+a\left(a^2-1\right)\)

\(=a-ab+a^3-a\)

\(=a^3-ab=a\left(a^2-b\right)\)\(\left(đpcm\right)\)

\(b,a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-xa+xa+xb\)

\(=ab+xb=b\left(a+x\right)\)\(\left(đpcm\right)\)

2 tháng 7 2019

a)

\(a\left(1-b\right)+a\left(a^2-1\right)\) 

=\(a-ab+a^3-a=a^3-b=a\left(a^2-b\right)\) (đpcm)

b)

\(a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-ax+xa+xb=ab+xb\) 

\(=b\left(a+x\right)\left(đpcm\right)\) 

hc tốt

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm