Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=a^6-1\)
\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Ta có
\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)
Thay a=0,5 vào a^2+1/a^2 ta được
\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)
Làm tương tự với các câu còn lại
1: =(8+a^3)(8-a^3)=64-a^6
2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x
=x^3-6x-8-x^3+x
=-5x-8
3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x
=2
Câu a : Ta có :
\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}\)
Vậy \(A>B\)
Câu b : Ta có :
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\dfrac{8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)
\(=\dfrac{...\left(3^{64}-1\right)\left(3^{64}+1\right)}{2}\)
\(=\dfrac{3^{128}-1}{2}< 3^{128}-1\)
Vậy \(A< B\)
\(\left(a^2-1\right)^3-\left(a^4+a^2+1\right)\left(a^2-1\right)\)
\(=a^6-3a^4+3a^2-1-\left(a^6-a^4+a^4-a^2+a^2-1\right)\)
\(=a^6-3a^4+3a^2-1-a^6+1\)
\(=-3a^4+3a^2\)
\(=-3a^2\left(a^2-1\right)\)
\(=-3a^2\left(a+1\right)\left(a-1\right)\)