Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
a) \(5\dfrac{4}{23}.27\dfrac{3}{47}+4\dfrac{3}{47}.\left(-5\dfrac{4}{23}\right)\)
\(=5\dfrac{4}{23}.27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right).5\dfrac{4}{23}\)
\(=5\dfrac{4}{23}.\left[27\dfrac{3}{47}+\left(-4\dfrac{3}{47}\right)\right]\)
\(=5\dfrac{4}{23}.\left(27\dfrac{3}{47}-4\dfrac{3}{27}\right)\)
\(=5\dfrac{4}{23}.23\)
\(=\dfrac{119}{23}.23\)
\(=\dfrac{119}{23}\)
b) \(4.\left(\dfrac{-1}{2}\right)^3+\dfrac{3}{2}\)
\(=4.\dfrac{-1}{6}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{3}{2}\)
\(=\dfrac{-2}{3}+\dfrac{3}{2}\)
\(=\dfrac{-4}{6}+\dfrac{9}{6}\)
\(=\dfrac{5}{6}\)
c) \(\left(\dfrac{1999}{2011}-\dfrac{2011}{1999}\right)-\left(\dfrac{-12}{1999}-\dfrac{12}{2011}\right)\)
\(=\dfrac{1999}{2011}-\dfrac{2011}{1999}-\dfrac{-12}{1999}+\dfrac{12}{2011}\)
\(=\left(\dfrac{1999}{2011}+\dfrac{12}{2011}\right)-\left(\dfrac{2011}{1999}+\dfrac{-12}{1999}\right)\)
\(=\dfrac{2011}{2011}-\dfrac{1999}{1999}\)
\(=1-1\)
\(=0\)
d) \(\left(\dfrac{-5}{11}+\dfrac{7}{22}-\dfrac{-4}{33}-\dfrac{5}{44}\right):\left(\dfrac{381}{22}-39\dfrac{7}{22}\right)\)
(đợi đã, mình chưa tìm được hướng làm...)
a: =1/8-1/8+2/5=2/5
b: =(-1/15-14/15)+(23/27+31/27)=2-1=1
c: \(=\dfrac{3}{7}\left(\dfrac{22}{21}+\dfrac{5}{21}+\dfrac{15}{21}\right)=\dfrac{3}{7}\cdot2=\dfrac{6}{7}\)
d: \(=\dfrac{-8}{9}\cdot\dfrac{3}{2}+\dfrac{1}{9}\cdot\dfrac{-3}{2}=-\dfrac{3}{2}\)
a; \(\dfrac{93}{17}\): \(x\) + (- \(\dfrac{21}{17}\)) : \(x\) + \(\dfrac{22}{7}\): \(\dfrac{22}{3}\) = \(\dfrac{5}{14}\)
\(\dfrac{94}{17}\) \(\times\) \(\dfrac{1}{x}\) - \(\dfrac{21}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17x}\) = \(\dfrac{5}{14}\) - \(\dfrac{3}{7}\)
\(\dfrac{72}{17x}\) = - \(\dfrac{1}{14}\)
17\(x\) = 72.(-14)
17\(x\) = - 1008
\(x\) = - 1008 : 17
\(x\) = - \(\dfrac{1008}{17}\)
Vậy \(x\) \(=-\dfrac{1008}{17}\)
b; - \(\dfrac{32}{27}\) - (3\(x\) - \(\dfrac{7}{9}\))3 = - \(\dfrac{24}{27}\)
- \(\dfrac{32}{27}\) + \(\dfrac{24}{27}\) = (3\(x\) - \(\dfrac{7}{9}\))3
(3\(x-\dfrac{7}{9}\))3 = - \(\dfrac{8}{27}\)
(3\(x-\dfrac{7}{9}\))3 = (- \(\dfrac{2}{3}\))3
3\(x-\dfrac{7}{9}\) = - \(\dfrac{2}{3}\)
3\(x\) = - \(\dfrac{2}{3}\) + \(\dfrac{7}{9}\)
3\(x\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) : 3
\(x\) = \(\dfrac{1}{27}\)
Vậy \(x=\dfrac{1}{27}\)