Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b= 1/4 +1/16+1/64+1/256+...+1/16384
4b = 1+ 1/4 +1/16 + 1/64+... +1/4096
4b-b = 1 -1/16384
3b = 16383/16384
b = 49149/16384
\(A=\frac{1}{4}+\frac{1}{16}+\frac{1}{64}+...+\frac{1}{16384}\)
\(A=\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{14}}\)
\(2^2A=1+\frac{1}{2^2}+...+\frac{1}{2^{12}}\)
\(4A-A=\left(1+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{14}}\right)\)
\(3A=1-\frac{1}{2^{14}}\)
\(A=\frac{1-\frac{1}{2^{14}}}{3}\)
a: 4A=4+4^2+...+4^9
=>3A=4^9-1
=>A=(4^9-1)/3
b: 2A=1+1/2+...+1/2^7
=>A=1-1/256=255/256
c: =1-1/5+1/5-1/9+...+1/85-1/89
=1-1/89=88/89
d: =1/3(3/1*4+3/4*7+...+3/304*307)
=1/3(1-1/4+1/4-1/7+...+1/304-1/307)
=1/3*306/307=102/307
e: E=1-1/2+1/2-1/3+...+1/11-1/12
=1-1/12=11/12
g: =2/5(1-1/6+1/6-1/11+...+1/96-1/101)
=2/5*100/101=40/101
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\) + \(\dfrac{1}{256}\)
2A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{64}\) + \(\dfrac{1}{128}\)
2A - A = 1 - \(\dfrac{1}{256}\)
A = \(\dfrac{255}{256}\)
đề phải là 1 +1/2 + 1/4 +1/32 + 1/64 + 1/128 +1/256 +/512 +1/1024 moi dug
\(E=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(2\times E=1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\)
\(2\times E-E=\left(1+\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{128}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{256}\right)\)
\(E=1-\dfrac{1}{256}\)
\(E=\dfrac{256}{256}-\dfrac{1}{256}\)
\(E=\dfrac{255}{256}\)