K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 2

Lời giải:
$A=\frac{1}{2}+\frac{3}{2}+(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2012}$

$\frac{3}{2}A=\frac{3}{4}+(\frac{3}{2})^2+(\frac{3}{2})^3+(\frac{3}{2})^4+...+(\frac{3}{2})^{2013}$

$\Rightarrow \frac{3}{2}A-A=(\frac{3}{2})^{2013}+\frac{3}{4}-\frac{1}{2}-\frac{3}{2}$

$\Rightarrow \frac{1}{2}A=(\frac{3}{2})^{2013}-\frac{5}{4}$

$A=2(\frac{3}{2})^{2013}-\frac{5}{2}$

$\Rightarrow B-A=(\frac{3}{2})^{2013}-2(\frac{3}{2})^{2013}+\frac{5}{2}=\frac{5}{2}-(\frac{3}{2})^{2013}$

31 tháng 7 2020

1. Ta có :

\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)

\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)

\(2^{20}-3< 2^{22}-3\)

\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)

\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)

\(\Leftrightarrow4A< 4B\)

\(\Leftrightarrow A< B\)

Vậy...

b/ Tương tự

6 tháng 4 2015

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

1 tháng 10 2017

Trần Thị Loan tại sao lại + 5/2?