K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

nhân A lên 2A sau đó lấy 2A-A là đc :

2A =1+1/2+.....+1/32

2A-A=(1+1/2+.....+1/32)-(1/2+1/4+.....+1/32+1/64)

A=1-1/64

A=63/64

12 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(2A=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\times2\)

\(2A=\frac{1}{2}\times2+\frac{1}{4}\times2+\frac{1}{8}\times2+\frac{1}{16}\times2+\frac{1}{32}\times2+\frac{1}{64}\times2\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)

\(A=1-\frac{1}{64}\)

\(A=\frac{63}{64}\)

4 tháng 11 2021

Đặt \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)

\(\Rightarrow A=2A-A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^5}-\dfrac{1}{2}-\dfrac{1}{2^2}-...-\dfrac{1}{2^6}=1-\dfrac{1}{2^6}\)

4 tháng 11 2021

Mọi người giúp mink nhahihi

24 tháng 6 2017

 

Cộng thêm 1/2 vào biểu thức đã cho, có:

S + 1/21/2+1/4+ 1/8+ 1/16+1/32+1/64+1/128

Nhận xét:

 

 

8 tháng 11 2017

Ta có:2A=\(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)

2A-A=\(\left(2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)\)

\(=2-\frac{1}{32}=\frac{63}{32}=A\)

8 tháng 11 2017

Ta có: \(A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\right)\)

\(\Rightarrow A=1-\frac{1}{2^5}=\frac{31}{32}\)

Vậy \(A=\frac{31}{32}\)

Ta có : A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

=> 2A  = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32

=> 2A - A = 1 - 1/64

=> A = 1 - 1/64

=> A = 63/64

1 tháng 3 2017

Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(\Rightarrow2A-A=1-\frac{1}{128}=\frac{127}{128}\)

1 tháng 3 2017

=127/128 nhe 

15 tháng 7 2015

Bạn kiểm tra lại đề hộ. Nếu có phân số \(\frac{1}{4}\)thì chịu còn không có thì dễ.

12 tháng 11 2019

dề có sai ko

12 tháng 11 2019

B= 1/2 + 1/4 + 1/8 +  1/16 + 1/32 + 1/64

B=1/2+1/2^2+1/2^3+1/2^4+1/2^5+1/2^6

=>2B=1+1/2+1/2^2+...1/3^5

=>2B-B=1-1/2^6

=>B=1-1/64

=>B=63/64