K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=1/2^2+1/3^2+....+1/1009^2

2A=2/2^2+2/3^2+...+2/1009^2

Ta có : (x-1).(x+1)=(x-1).x+x-1=x^2-x+x-1=x^2-1<x^2

2A<2/1.3+2/3.5+2/5.7+...+2/1008.10010

2A<1-1/3+1/3-1/5+...+1/1008-1/1010

2A<1-1/1010

2A<1009/1010<1<3/2

2A<3/2

A<3/4

ĐPCM

Nhớ cho mình nha!

13 tháng 12 2018

a) A=21+22+23+...+22010

    A=(21+22)+(23+24)+.....+(22009+22010)

    A=(21x3)+(23x3)+.....+(22009x3)

    A=3x(21+23+.......+22009)

Vậy A chia hết cho 3.

NHỮNG CÂU CÒN LẠI BẠN LÀM TƯƠNG TỰ !

17 tháng 4 2017

Ta có :

\(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...........+\dfrac{1}{1+3+.....+2013}\)

\(A=\dfrac{1}{\dfrac{\left(1+3\right).2}{2}}+\dfrac{1}{\dfrac{\left(1+5\right).3}{2}}+.........+\dfrac{1}{\dfrac{\left(1+2013\right).1007}{2}}\)

\(A=\dfrac{2}{2.4}+\dfrac{2}{3.6}+\dfrac{2}{4.8}+...........+\dfrac{2}{1007.2014}\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+..........+\dfrac{1}{1007.1007}\)

\(\Rightarrow A< \dfrac{1}{2.2}+\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{1006.1008}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...........+\dfrac{1}{1006}-\dfrac{1}{1007}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\left(\dfrac{1}{2}-\dfrac{1}{1007}\right)\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}=\dfrac{3}{4}\) \(\rightarrowđpcm\)

~ Chúc bn học tốt ~

21 tháng 4 2017

A=1/(1+3)+1/(1+3+5)+1/(1+3+5+7)+...+1/(1+3+5+7+...+2017)

A=1/2^2+1/3^2+1/4^2+...+1/1009^2

2A=2/2^2+2/3^2+2/4^2+...+2/1009^2

Ta co :(x-1)(x+1)=(x-1)x+x-1=x^2-x+x-1=x^2-1<x^2

suy ra 2A<2/(1*3)+2/(3*5)+2/(5*7)+...+2/(1008*1010)

suy ra 2A <1-1/3+1/3-1/5+1/5-1/7+...+1/1008-1/1010

suy ra 2A<1-1/1010

suy ra 2A<2009/2010<1<3/2

suy ra 2A <3/2

suy ra A <3/4 (dpcm)

nho k cho minh voi nha

3 tháng 3 2019

có cách nào dễ hiểu hơn không ạ?

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

11 tháng 8 2016

a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{3}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(1+\left(\frac{-1}{2}+\frac{1}{2}\right)+\left(\frac{-1}{3}+\frac{1}{3}\right)+...+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{10}\)

\(1-\frac{1}{10}\)

=\(\frac{9}{10}\)

b)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)

=\(1-\frac{1}{11}\)

\(\frac{10}{11}\)

c) đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}\)

     \(\frac{1}{3}A\)=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

     \(\frac{2}{3}A\)=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)

      \(\frac{2}{3}A\)=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

     \(\frac{2}{3}A\)=\(1+\left(\frac{-1}{3}+\frac{1}{3}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+\left(\frac{-1}{7}+\frac{1}{7}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)-\frac{1}{11}\)

     \(\frac{2}{3}A\)=\(\frac{10}{11}\)

         A= \(\frac{10}{11}:\frac{2}{3}\)

          A= \(\frac{10}{11}.\frac{3}{2}\)=\(\frac{15}{11}\)

d) giả tương tự câu c kết quả \(\frac{25}{11}\)

11 tháng 8 2016

tổng đặc biệt đó bạn

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{9\times10}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(1-\frac{1}{10}=\frac{9}{10}\)

những câu sau cũng áp dụng như vậy nhé

a: \(\Leftrightarrow\left(\dfrac{13}{4}:x\right)\cdot\left(-\dfrac{5}{4}\right)=\dfrac{-10}{6}-\dfrac{5}{6}=\dfrac{-15}{6}=\dfrac{-5}{2}\)

\(\Leftrightarrow\dfrac{13}{4}:x=\dfrac{5}{2}\cdot\dfrac{5}{4}=\dfrac{25}{8}\)

hay \(x=\dfrac{13}{4}:\dfrac{25}{8}=\dfrac{13}{4}\cdot\dfrac{8}{25}=\dfrac{26}{25}\)

b: \(\Leftrightarrow\dfrac{3}{4}:x=\dfrac{11}{36}-\dfrac{1}{4}=\dfrac{2}{36}=\dfrac{1}{18}\)

=>\(x=\dfrac{3}{4}:\dfrac{1}{18}=\dfrac{54}{4}=\dfrac{27}{2}\)

c: \(\Leftrightarrow\left(-\dfrac{6}{5}+x\right):\left(-3.6\right)=-\dfrac{7}{4}+\dfrac{1}{4}\cdot8=\dfrac{1}{4}\)

=>x-6/5=-9/10

=>x=3/10

a: =>x-2/5=3/4:1/3=3/4*3=9/4

=>x=9/4+2/5=45/20+8/20=53/20

b: =>x-2/3=7/3:4/5=7/3*5/4=35/12

=>x=35/12+2/3=43/12

c: 1/3(x-2/5)=4/5

=>x-2/5=4/5*3=12/5

=>x=12/5+2/5=14/5

d: =>2/3x-1/3-1/4x+1/10=7/3

=>5/12x-7/30=7/3

=>5/12x=7/3+7/30=77/30

=>x=77/30:5/12=154/25

e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)

=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)

=>x=19/7:23/28=76/23

f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5

=>13/12x=1/5+3/2+4/3+5/4=257/60

=>x=257/65

i: =>x^2-2/5x-x^2-2x+11/4=4/3

=>-12/5x=4/3-11/4=-17/12

=>x=17/12:12/5=85/144