K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2023

Ta có A-B=11...1(2n c/s 1)-22....2(n c/s 2)

A-B=11....1(n c/s 1)x10+11.....1(n /s 1)-2x 11.....1(n c/s 1)

Đặt 11.....1(n c/s 1)=a(a thuộc N)

A-B=a(9a+1)+a-2a

A-B=9a2+a+a-2a

A-B=9a2

A-B=(3a)2.Vì a thuộc N nên 3a thuộc N nên A-B là số chính phương

25 tháng 11 2016

Ta dễ dàng chứng minh được công thức: \(111...1=\frac{10^n-1}{9}\)

(n số 1)

Áp dụng công thức trên ta có:

\(a+b+1=111...1.10^n+111...1+111...1.4+1\)

(n số 1) (n số 1) (n số 1)

\(=\frac{10^n-1}{9}.\left(10^n+1+4\right)+1\)

\(=\frac{10^n-1}{9}.\left(10^n+1+4+3\right)-\frac{10^n-1}{9}.3+1\)

\(=\frac{10^n-1}{9}.\left(10^n+8\right)-\frac{10^n-1}{3}+1\)

\(=111...1.3.333...36-333...3+1\)

(n số 1) (n - 1 số 3) (n số 3)

\(=333...3.333...36-333...32\)

(n số 3)(n - 1 số 3)(n - 1 số 3)

\(=333...3.333...34+333...3+333...3-333...32\)

(n số 3)(n - 1 số 3)(n số 3) (n số 3) (n - 1 số 3)

\(=333...34^2\), là số chính phương (đpcm)

(n - 1 số 3)

 

11 tháng 8 2023

Ai trả lời nhanh nhất mình tik cho

 

 

6 tháng 11 2018

sit holy

21 tháng 4 2022

ok

21 tháng 4 2022

`a=11...11`(2n số 1)

`b=11...11`(n+1 số 1)

`c=66...66`(n số 6)

`->a+b+c+8=11...11+11...11+66...66+8`

\(=\dfrac{10^{2n}-1}{9}+\dfrac{10^{n+1}-1}{9}+\dfrac{6\left(10^n-1\right)}{9}+\dfrac{72}{9}\\ =\dfrac{10^n-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\\ =\dfrac{\left(10^n\right)^2+10\cdot10^n+6\cdot10^n-6+70}{9}\\ =\dfrac{\left(10^n\right)^2+16\cdot10^n+64}{9}\\ =\left(\dfrac{10^n+8}{3}\right)^2\)

`->a+b+c+8` là số chính phương 

`->đpcm`

5 tháng 9 2023

tick giúp mình nha

Lời giải

Đặt k = 11...1(n chữ số 1).

Thì a = 11...1111(2n chữ số 1) = 11..100..0 + 11...11 = k(9k + 1) + k = 9k2 + 2k.

Tương tự, b = 10k + 1; c = 6k.

=> a + b + c + 8 = 9k2 + 2k + 10k + 1 + 6k + 8 = 9k2 + 18k + 9 = (3k + 3)2.

Vậy a + b + c + 8 là số chính phương.

Chứng minh lại

Ta có:

a + b + c + 8 = (9k2 + 2k) + (10k + 1) + (6k) + 8 = 9k2 + 18k + 9 = (3k + 3)2

Ta thấy rằng (3k + 3)2 là bình phương của số tự nhiên (3k + 3). Do đó, a + b + c + 8 là số chính phương.

Kết luận

Bằng cách đặt k = 11...1(n chữ số 1), ta có thể chứng minh được rằng a + b + c + 8 là số chính phương.

5 tháng 9 2023

??

-(

bn lấy nó đâu ra dz