Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(a+b)(b+c)(c+a)+abcA=(a+b)(b+c)(c+a)+abc
=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc=a2b+ab2+a2c+ac2+b2c+bc2+2abc+abc
=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)=ab(a+b+c)+bc(a+b+c)+ca(a+b+c)
=(a+b+c)(ab+bc+ca)=(a+b+c)(ab+bc+ca)
Vậy....
a: \(A=\left(1-\dfrac{2\sqrt{a}}{a+1}\right):\dfrac{1}{\sqrt{a}+1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2}{a+1}\cdot\dfrac{\sqrt{a}+1}{1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(a-1\right)^2-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}=\dfrac{a^2-2a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}\)
b: Khi \(a=2000-2\sqrt{1999}\) thì \(A=\dfrac{\left(1999-2\sqrt{1999}\right)^2-2\left(\sqrt{1999}-1\right)}{\left(2001-2\sqrt{1999}\right)\left(\sqrt{1999}-1+1\right)}\)
\(\simeq42,66\)
ĐKXĐ: \(a\notin\left\{1;-1;0\right\}\)
\(A=\left(\dfrac{a+2}{a+1}-\dfrac{a-2}{a-1}\right)\cdot\dfrac{a+1}{a}\)
\(=\dfrac{\left(a+2\right)\left(a-1\right)-\left(a-2\right)\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\cdot\dfrac{a+1}{a}\)
\(=\dfrac{a^2+a-2-\left(a^2-a-2\right)}{a-1}\cdot\dfrac{1}{a}\)
\(=\dfrac{2a}{a-1}\cdot\dfrac{1}{a}=\dfrac{2}{a-1}\)
A=2B
=>\(\dfrac{2}{a-1}=\dfrac{2\cdot3}{a^2-1}\)
=>\(\dfrac{1}{a-1}=\dfrac{3}{a^2-1}\)
=>\(\dfrac{1}{a-1}=\dfrac{3}{\left(a-1\right)\left(a+1\right)}\)
=>\(\dfrac{a+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{3}{\left(a-1\right)\left(a+1\right)}\)
=>a+1=3
=>a=2(nhận)
\(1)\left(a+b\right)\left(a+b\right)\)
\(=a\left(a+b\right)+b\left(a+b\right)\)
\(=a^2+ab+ba+b^2\)
\(2)\left(a-b\right)\left(a-b\right)\)
\(=a\left(a-b\right)-b\left(a-b\right)\)
\(=a^2-ab-ba-b^2\)
\(3)\left(a-b\right)\left(a+b\right)\)
\(=a\left(a+b\right)-b\left(a+b\right)\)
\(=a^2+ab-ba+b^2\)
1, (a+b)(a+b) = (a + b)2
2, (a-b)(a-b) = (a - b)2
3, (a-b)(a+b) = a2 - b2
4, (a+b)(a+b)(a+b) = (a +b)3
5, (a-b)(a-b)(a-b) = (a - b)3
6) ( a+b)(a2 - ab + b2) = a3 + b3
7) (a-b)(a^2+ab+b^2) = a3 - b3
Ta có:
\(\frac{a^5+a^6+a^7+a^8}{a^{-5}+a^{-6}+a^{-7}+a^{-8}}\)
\(=\frac{a^5+a^6+a^7+a^8}{\frac{1}{a^5}+\frac{1}{a^6}+\frac{1}{a^7}+\frac{1}{a^8}}\)
\(=a^{5+6+7+8}=a^{26}\)
Thay vào sẽ là:
\(2015^{26}=8.149881843.10^{85}\)
\(A=\frac{a^3\left(a^3+a^2+a+1\right).a^8}{a^3+a^2+a^1+a}=a^{24}\)