Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(3x\left(7x-2\right)-14x+4=0\)
\(\Leftrightarrow3x\left(7x-2\right)-2\left(7x-2\right)=0\)
\(\Leftrightarrow\left(7x-2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-2=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=2\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{7}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{2}{7};\dfrac{2}{3}\right\}\)
b) ĐKXĐ: \(x\notin\left\{0;3\right\}\)
Ta có: \(\dfrac{2x+1}{x-3}+\dfrac{5-3x}{x}=\dfrac{2x^2-15}{x^2-3x}\)
\(\Leftrightarrow\dfrac{x\left(2x+1\right)}{x\left(x-3\right)}+\dfrac{\left(5-3x\right)\left(x-3\right)}{x\left(x-3\right)}=\dfrac{2x^2-15}{x\left(x-3\right)}\)
Suy ra: \(2x^2+x+5x-15-3x^2+9x-2x^2+15=0\)
\(\Leftrightarrow-3x^2+15x=0\)
\(\Leftrightarrow-3x\left(x-5\right)=0\)
mà -3<0
nên x(x-5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=5\left(nhận\right)\end{matrix}\right.\)
Vậy: S={5}
e, 3x(2-x) =15(x-2)
\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy..
f, (x+5)(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Vậy..
g, x(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
,h, (2x -4)(x-2)=0
\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
i, (x+1/5)(2x-3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)
k, x²-4x=0
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
m, 4x²-1=0
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
n, x²-6x+9=0
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)
<=> x=3
l, (3x-5)²-(x+4)²=0
\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)
\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy ..
o, 7x(x+2)-5(x+2)=0
\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)
Vậy....
p, 3x(2x-5)-4x+10=0
\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)
\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...
q, (2-2x)-x²+1=0
\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)
\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy ....
r, x(1-3x)=5(1-3x)
\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)
s, 2x-3/4+x+1/6=3
\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)
Bài 1:
a) Ta có: 7x+12=0
\(\Leftrightarrow7x=-12\)
hay \(x=-\frac{12}{7}\)
Vậy: \(x=-\frac{12}{7}\)
b) Ta có: 5x-2=0
\(\Leftrightarrow5x=2\)
hay \(x=\frac{2}{5}\)
Vậy: \(x=\frac{2}{5}\)
c) Ta có: 12-6x=0
\(\Leftrightarrow6x=12\)
hay x=2
Vậy: x=2
d) Ta có: -2x+14=0
⇔-2x=-14
hay x=7
Vậy: x=7
Bài 2:
a) Ta có: 3x+1=7x-11
⇔3x+1-7x+11=0
⇔-4x+12=0
⇔-4x=-12
hay x=3
Vậy: x=3
b) Ta có: 2x+x+12=0
⇔3x+12=0
⇔3x=-12
hay x=-4
Vậy: x=-4
c) Ta có: x-5=3-x
⇔x-5-3+x=0
⇔2x-8=0
⇔2x=8
hay x=4
Vậy: x=4
d) Ta có: 7-3x=9-x
⇔7-3x-9+x=0
⇔-2x-2=0
⇔-2x=2
hay x=-1
Vậy: x=-1
e) Ta có: 5-3x=6x+7
⇔5-3x-6x-7=0
⇔-9x-2=0
⇔-9x=2
hay \(x=\frac{-2}{9}\)
Vậy: \(x=\frac{-2}{9}\)
f) Ta có: 11-2x=x-1
⇔11-2x-x+1=0
⇔12-3x=0
⇔3x=12
hay x=4
Vậy: x=4
g) Ta có: 15-8x=9-5
⇔15-8x=4
⇔8x=11
hay \(x=\frac{11}{8}\)
Vậy: \(x=\frac{11}{8}\)
Bài 3:
a) Ta có: 0,25x+1,5=0
⇔0,25x=-1,5
hay x=-6
Vậy: x=-6
b) Ta có: 6,36-5,2x=0
⇔5,2x=6,36
hay \(x=\frac{159}{130}\)
Vậy: \(x=\frac{159}{130}\)
x-x(3x+2)=15-3x(x+2)
x-3x2-2x=15-3x2-6x
x-3x2-2x+3x2+6x=15
5x=15
x=15/5
x=3
(x-2)2-16=0
(x-2-4)(x-2+4)=0
(x-6)(x+2)=0
x-6=0 hoặc x+2=0
x=6 hoặc x=-2
(x+5)2-(2x-1)2=0
(x+5-2x+1)(x+5+2x-1)=0
(6-x)(5+3x)=0
6-x=0hoặc 5x+3=0
x=6 hoặc x=\(\frac{-3}{5}\)
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
a) (x + 2)(3x - 15) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=5\end{matrix}\right.\)
b) |x - 5| = 3x + 1
\(\Leftrightarrow\left[{}\begin{matrix}x< 5\\x\ge5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\\text{ko có x thỏa mãn}\end{matrix}\right.\)
=> x = 1