K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2020

Bài làm

a) Đặt t = x2 + x + 1

bthuc <=> t( t + 1 ) - 12

            = t2 + t - 12

            = t2 - 3t + 4t - 12

            = t( t - 3 ) + 4( t - 3 )

            = ( t - 3 )( t + 4 )

            = ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )

            = ( x2 + x - 2 )( x2 + x + 5 )

            = ( x2 - x + 2x - 2 )( x2 + x + 5 )

            = [ x( x - 1 ) + 2( x - 1 ) ]( x2 + x + 5 )

            = ( x - 1 )( x + 2 )( x2 + x + 5 )

28 tháng 11 2020

Bài làm

b) 10n2 + n - 10

= 10n2 - 10n + 9n - 9 - 1

= ( 10n2 - 10n ) + ( 9n - 9 ) - 1

= 10n( n - 1 ) + 9( n - 1 ) - 1

= ( n - 1 )( 10n + 9 ) - 1

Ta có ( n - 1 )( 10n + 9 ) chia hết ( n - 1 )

=> Để ( 10n2 + n - 10 ) chia hết ( n - 1 )

thì -1 chia hết ( n - 1 )

hay ( n - 1 ) ∈ Ư(-1) = { ±1 }

=> n ∈ { 2 ; 0 }

26 tháng 12 2021

b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)

22 tháng 5 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:  3 n 3 + 10 n 2 - 5  = 3 n + 1 n 2 + 3 n - 1 - 4

Để phép chia đó là chia hết thì 4 ⋮ 3n + 1⇒ 3n + 1 ∈ Ư(4)

       3n + 1 ∈ {-4; -2; -1; 1; 2; 4}

       3n + 1 = -4⇒ 3n = -5⇒ n = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ∉ Z : loại

       3n + 1 = -2⇒ 3n = -3⇒ n = -1 ∈ Z

       3n + 1 = -1⇒ 3n = -2⇒ n = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ∉ Z : loại

       3n + 1 = 1⇒ 3n = 0⇒ n = 0 ∈ Z

       3n + 1 = 2⇒ 3n = 2⇒ n = Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 ∉ Z : loại

       3n + 1 = 4⇒ 3n = 3⇒ n = 1 ∈ Z

Vậy n ∈ {-1; 0; 1} thì  3 n 3 + 10 n 2 - 5  chia hết cho 3n + 1.

a: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

mà n là số nguyên

nên \(n\in\left\{0;-1;1\right\}\)

b: \(\Leftrightarrow10n^2-10n+11n-11+1⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1\right\}\)

hay \(n\in\left\{2;0\right\}\)

c: \(\Leftrightarrow x^4-x^3+5x^2+x^2-x+5+n-5⋮x^2-x+5\)

=>n-5=0

hay n=5

26 tháng 12 2021

\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)

Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)

\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)

\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)

19 tháng 10 2021

Bài 3:

Ta có: \(2n^2+n-7⋮n-2\)

\(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

20 tháng 5 2016

a) Cho x- x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }

Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x- x+ 6x2- x sẽ luôn được kết quả là -5

=>-5 +a=0 => a=5

b) Cho x+2=0 => x=-2

Thay giá trị của x vào biểu thức 2x-  3x+ x sẽ được kết quả là -30

=> -30 + a=0 => a=30 

a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)

Thay n= \(\frac{-1}{3}\)vào biểu thức 3n+ 10n2 -5 sẽ được kết quả -4

Vậy n = -4

b) Cho n-1=0 => n=1

 Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1

Vậy n = 1

15 tháng 12 2021

\(a,n^3-2n^2+3n+3=n^3-n^2-n^2+n+2n-2+5\\ =\left(n-1\right)\left(n^2-n+2\right)+5\\ \Leftrightarrow n^3-2n^2+3n+3⋮\left(n-1\right)\\ \Leftrightarrow5⋮n-1\\ \Leftrightarrow n-1\in\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)

 

15 tháng 12 2021

\(b,\Leftrightarrow x^4+6x^3+7x^2-6x+a\\ =x^4+3x^3-x^2+3x^3+9x^2-3x-x^2-3x+1-1+a\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)-1+a\\ =\left(x^2+3x-1\right)^2+a-1\)

Để \(x^4+6x^3+7x^2-6x+a⋮x^2+3x-1\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

 

4 tháng 12 2018

Mình chỉ làm mẫu một câu thôi, mấy câu này giống nhau về cách làm :))

a) Thực hiện phép chia đa thức 3n3 + 10n2 - 5 cho đa thức 3n + 1 được thương là n2 + 3n - 1 và dư -4

Vậy để 3n3 + 10n2 - 5 ⋮ 3n + 1 thì -4 ⋮ 3n + 1

=> 3n + 1 thuộc Ư(4) = { 1; 2; 4; -1; -2; -4 }

=> n thuộc { 0; 1/3; 1; -2/3; -1; -5/3 }

Mà n nguyên => n thuộc { 0; 1; -1 }

b) d) tương tự

4 tháng 12 2018

c) hơi khác mình làm nốt

Thực hiện phép chia đa thức x4 - x3 + 6x2 - x + n cho đa thức x2 - x + 5 ta được số dư là n - 5

Để phép chia trên là phép chia hết thì số dư phải bằng 0

=> n - 5 = 0

<=> n = 5

Vậy n = 5

25 tháng 9 2021

Mình đang cần gấp

a: =>\(n+2\in\left\{1;-1;7;-7\right\}\)

=>\(n\in\left\{-1;-3;5;-9\right\}\)

b: =>n-3+4 chia hết cho n-3

=>\(n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{4;2;5;1;7;-1\right\}\)

c: =>3n^3+n^2+9n^2-1-4 chia hết cho 3n+1

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-\dfrac{2}{3};\dfrac{1}{3};-1;1;-\dfrac{5}{3}\right\}\)

d: =>10n^2-10n+11n-11+1 chia hết cho n-1

=>\(n-1\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;0\right\}\)