K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

a) chịu 

b) Ta có : |x| \(\ge0\forall x\in Z\)

               |y - 1| \(\ge0\forall x\in Z\)

Mà : |x| + |y - 1| = 0 

Nên : \(\hept{\begin{cases}\left|x\right|=0\\\left|y-1\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Vậy x = 0 ; y = 1

15 tháng 1 2021

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

Giải:

a) \(\dfrac{12}{16}=\dfrac{-x}{4}=\dfrac{21}{y}=\dfrac{z}{80}\)  

\(\Rightarrow x=\dfrac{12.-4}{16}=-3\) 

\(\Rightarrow y=\dfrac{16.21}{12}=28\) 

\(\Rightarrow z=\dfrac{12.80}{16}=60\) 

b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)\)  =0

    \(\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\) 

     \(x.\left(\dfrac{1}{3}+\dfrac{2}{5}\right)\)   \(=0+\dfrac{2}{5}\) 

            \(x.\dfrac{11}{15}\)       \(=\dfrac{2}{5}\) 

                 x          \(=\dfrac{2}{5}:\dfrac{11}{15}\) 

                x           \(=\dfrac{6}{11}\) 

c) (2x-3)(6-2x)=0

⇒2x-3=0 hoặc 6-2x=0

        x=3/2 hoặc x=3

d) \(\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)

               \(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-2}{3}-\dfrac{3}{2}\) 

               \(\dfrac{1}{3}\left(2x-5\right)=\dfrac{-13}{6}\)  

                   \(2x-5=\dfrac{-13}{6}:\dfrac{1}{3}\) 

                   \(2x-5=\dfrac{-13}{2}\) 

                         \(2x=\dfrac{-13}{2}+5\)

                         \(2x=\dfrac{-3}{2}\) 

                           \(x=\dfrac{-3}{2}:2\) 

                           \(x=\dfrac{-3}{4}\) 

e) \(2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}\) 

       \(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}:2\) 

       \(\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{8}\) 

\(\Rightarrow\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{8}\)  hoặc \(\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-1}{8}\) 

                \(x=\dfrac{11}{12}\) hoặc \(x=\dfrac{5}{12}\)

Bài 2: 

a: =>x-1=1 hoặc x-1=-1

=>x=2 hoặc x=0

b: =>x+1=-1

hay x=-2

c: =>(135-7x):9=8

=>135-7x=72

=>7x=63

hay x=9

d: =>(x+7)(x-3)<0

=>-7<x<3

e: \(\Leftrightarrow3^{x-3}=18+9=27\)

=>x-3=3

hay x=6

f: =>4-2x=0

hay x=2

10 tháng 2 2022

bài 1 ik

 

21 tháng 6 2017

a, \(\left(3x-2\right)\left(2y-3\right)=1\) (điều kiện \(x;y\in N\))

\(\Rightarrow3x-2;2y-3\inƯ\left(1\right)\)

\(\Rightarrow3x-2;2y-3\in\left\{-1;1\right\}\)

Ta có bảng sau:

\(3x-2\) -1 1
\(2y-3\) -1 1
x \(\dfrac{1}{3}\) 1
y 1 2
Chọn or loại Loại do \(x\notin N\) Chọn

Vậy........

b, \(\left(x+1\right).\left(2y-1\right)=12\)

\(\Rightarrow x+1;2y-1\inƯ\left(12\right)\)

\(\Rightarrow x+1;2y-1\in\left\{1;2;3;4;6;12\right\}\)

Ta có bảng sau:

\(x+1\) 1 2 3 4 6 12
\(2y-1\) 12 6 4 3 2 1
x 0 1 2 3 5 11
y \(\dfrac{13}{2}\) \(\dfrac{7}{2}\) \(\dfrac{5}{2}\) 2 \(\dfrac{3}{2}\) 1
Chọn or loại Loại vì \(y\notin N\) Loại vì \(y\notin N\) Loại vì \(y\notin N\) Chọn Loại vì \(y\notin N\) Chọn

Vậy.......

Chúc bạn học tốt!!! Câu c làm tương tự nha!

21 tháng 6 2017

Mình chỉ làm 1 câu thôi,các câu sau bạn làm tương tự(khuyến khích tự giải,thế sẽ có nhìu kiến thức hơn mk giải hết cho bạn nhé)

\((3x-2).(2y-3)=1\)

\(\Leftrightarrow\left(3x-2\right);\left(2y-3\right)\inƯ\left(1\right)\)

\(Ư\left(1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow3x-2=1\Rightarrow3x=3\Rightarrow x=1\)

\(2y-3=-1\Rightarrow2y=2\Rightarrow y=1\)

\(\Leftrightarrow3x-2=-1\Rightarrow3x=1\Rightarrow x=\dfrac{1}{3}\)
\(2y-3=1\Rightarrow2y=4\Rightarrow y=2\)

Vì x;y thuộc N nên ta có cặp

\(x;y=\left\{\left(1\right);\left(1\right)\right\}\)