K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

a. $x(3x+1)+(x-1)^2-(2x+1)(2x-1)=0$

$\Leftrightarrow (3x^2+x)+(x^2-2x+1)-(4x^2-1)=0$

$\Leftrightarrow 3x^2+x+x^2-2x+1-4x^2+1=0$

$\Leftrightarrow (3x^2+x^2-4x^2)+(x-2x)+(1+1)=0$

$\Leftrightarrow -x+2=0$

$\Leftrightarrow x=2$

b.

$(x+1)^3+(2-x)^3-9(x-3)(x+3)=0$

$\Leftrightarrow [(x+1)+(2-x)][(x+1)^2-(x+1)(2-x)+(2-x)^2]-9(x-3)(x+3)=0$

$\Leftrightarrow 3[x^2+2x+1-(x-x^2+2)+(x^2-4x+4)]-9(x-3)(x+3)=0$

$\Leftrightarrow 3(3x^2-3x+3)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1)-9(x^2-9)=0$

$\Leftrightarrow 9(x^2-x+1-x^2+9)=0$
$\Leftrightarrow 9(-x+10)=0$

$\Leftrightarrow -x+10=0\Leftrightarrow x=10$

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

c.

$(x-1)^3-(x+3)(x^2-3x+9)+3x^2=25$

$\Leftrightarrow (x^3-3x^2+3x-1)-(x^3+3^3)+3x^2=25$

$\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2=25$
$\Leftrightarrow (x^3-x^3)+(-3x^2+3x^2)+3x-28=25$

$\Leftrightarrow 3x-28=25$

$\Leftrightarrow x=\frac{53}{3}$

d.

$(x+2)^3-(x+1)(x^2-x+1)-6(x-1)^2=23$
$\Leftrightarrow (x^3+6x^2+12x+8)-(x^3+1)-6(x^2-2x+1)=23$

$\Leftrightarrow x^3+6x^2+12x+8-x^3-1-6x^2+12x-6=23$

$\Leftrightarrow (x^3-x^3)+(6x^2-6x^2)+(12x+12x)+(8-1-6)=23$
$\Leftrightarrow 24x+1=23$

$\Leftrgihtarrow 24x=22$

$\Leftrightarrow x=\frac{11}{12}$

27 tháng 8 2021

`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`

27 tháng 8 2021


`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`

28 tháng 7 2018

Ui em k rõ là giải phương trình hay rút gọn nữa :((

a: \(A=\dfrac{x+2}{x}\cdot\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}\)

b: \(B=\dfrac{2x-6+3x+9-5x+2}{\left(x-3\right)\left(x+3\right)}=\dfrac{5}{x^2-9}\)

24 tháng 6 2019

a) Rút gọn VT = 45x + 8. Từ đó tìm được x = 2 15 .  

b) Rút gọn VT = -25x – 8. Từ đó tìm được x = − 11 25 .

2 tháng 3 2021

1) `x^2+4-2(x-1)=(x-2)^2`

`<=>x^2+4-2x+2=x^2-4x+4`

`<=>-2x+2=-4x`

`<=>2x=-2`

`<=>x=-1`

.

2) ĐKXĐ: `x \ne \pm 3`

`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`

`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`

`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`

`<=>10x+6=x^2+4x+6`

`<=>x^2-6x=0`

`<=>x(x-6)=0`

`<=>x=0;x=6`

.

3) ĐKXĐ: `x \ne \pm 3`

`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`

`<=>(3x-3)-(x+3)=(x+1)(x-3)`

`<=> 2x-6=x^2-2x-3`

`<=>x^2-4x+3=0`

`<=>x^2-x-3x+3=0`

`<=>x(x-1)-3(x-1)=0`

`<=>(x-3)(x-1)=0`

`<=> x=3;x=1`

Vậy...

25 tháng 2 2021

`a,3(x-2)^2+9(x-1)=3(x^2+x-3)`

`<=>3(x^2-4x+4)+9x-9=3x^2+3x-9`

`<=>3x^2-12x+12+9x-9=3x^2+3x-9`

`<=>3x^2-3x+3=3x^2+3x-9`

`<=>6x=12`

`<=>x=12`

`b,(x+3)^2-(x-3)=6x+18`

`<=>(x+3-x+3)(x+3+x-3)+6x+18`

`<=>6.2x=6(x+3)`

`<=>2x=x+3`

`<=>x=3`

`c,(2x+7)^2=9(x+2)^2`

`<=>(2x+7)^2=(3x+6)^2`

`<=>(3x+6-2x-7)(3x+6+2x+7)=0`

`<=>(x-1)(5x+13)=0`

`<=>` $\left[ \begin{array}{l}x-1=0\\5x+13=0\end{array} \right.$

`<=>` $\left[ \begin{array}{l}x=1\\5x=-13\end{array} \right.$

`<=>` $\left[ \begin{array}{l}x=1\\x=-\dfrac{13}{5}\end{array} \right.$

a) Ta có: \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)

\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)

\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\)

\(\Leftrightarrow-6x+12=0\)

\(\Leftrightarrow-6x=-12\)

hay x=2

Vậy: x=2

16 tháng 8 2021

a, (x+2)2+(x-3)2=2x(x+7)

x.2+2.2+x.2+(-3).2-2x=8

2x+4+2x-6-2x=8

(2x+2x)+(4-6)=8

4x-2=8

4x=8+2

4x=10

   X=10:4

    X=5/2

16 tháng 8 2021

a) (x+2)2+(x-3)= 2x(x+7)

⇒x2+4x+4+x2-6x+9=2x2+14x

⇒x2+4x+4+x2-6x+9-2x2-14x=0

⇒ -16x+13=0

⇒ x=\(\dfrac{13}{16}\)

b) (x+3)(x2-3x+9) = x(x2+4)-1

⇒x(x2-3x+9)+3(x2-3x+9)=x3+4x-1

⇒x3-3x2+9x+3x2-9x+27-x3-4x+1=0

⇒-4x+28=0

⇒x=7

a: Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+1+3x^2=-33\)

\(\Leftrightarrow39x=-34\)

hay \(x=-\dfrac{34}{39}\)

b: Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-2\right)\left(x+2\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x=28\)

hay x=7

c: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)

\(\Leftrightarrow x^3+8-x^3+9x=26\)

\(\Leftrightarrow x=2\)