K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

\(a,6k\left(k\in N\right)\\ b,a+2b⋮7\Rightarrow\left\{{}\begin{matrix}a⋮7\\2b⋮7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮7\\b⋮7\left(2⋮̸7\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4a⋮7\left(a⋮7\right)\\b⋮7\end{matrix}\right.\\ \Rightarrow4a+b⋮7\)

1:

a: A chia hết cho 2

=>x+52+64 chia hết cho 2

=>x chia hết cho 2

=>\(x\in B\left(2\right)\)

b: B không chia hết cho 9

=>x+63+54 không chia hết cho 9

=>x+117 không chia hết cho 9

=>

\(x\notin B\left(9\right)\)

2:

a: a+1;a+2;a+3;a+4

b: a+1+a+2+a+3+a+4

=4a+10

=4a+8+2

=4(a+2)+2 không chia hết cho 4

23 tháng 12 2021

a/

\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)

\(7a⋮7\)

\(\Rightarrow10a+4b-7a=3a+4b⋮7\)

5 tháng 11 2016

17a +13b 9c = 3a +6b +9c +14a +7b

=3(a+2b+3c) +14a +7b

a+2b+3c chia hết cho 7

=> 3(a+2b+3c) chia hết cho 7

14a chia hết cho 7

7b chia hết cho 7

từng số chia hết cho 7, tổng của chúng chắc chắn chia hết cho 7

6 tháng 11 2016

\(17a+13b+9c=3a+6b+14a+7b\)

\(=3\left(a+2b+3c\right)+14b+7b\)

\(a+2b+3c\)chia hết cho 7

\(\Rightarrow3\left(a+2b+3c\right)\)chia hết cho 7

Ta có: 14a chia hết cho 7 ( Vì 14 chia hết cho 7 )

           7b chia hết cho 7 ( Vì 7 chia hết cho 7 )

Vì từng số hạng chia hết cho 7 nên tổng trên chia hết cho 7

=> 17a+13b+9c chia hết cho 7 (đpcm)

17 tháng 9 2018

dễ lắm bn cứ nhân lên mk chỉ một abif r cứ dựa vào mà làm nhá

25.(3a+2b)+10a+b=85a+51b chia hết cho 17

vì 3a+2b chia hết cho 17 mà 25.(3a+2b)+10a+b=85a+51b chia hết cho 17=>10a+bchia hết cho 17

20 tháng 3 2017

a) Số chia cho 4 có thể có dư là: 0; 1; 2; 3

Số chia cho 5 có thể có dư là: 0; 1; 2; 3; 4

Số chia cho 6 có thể có dư là: 0; 1; 2; 3; 4; 5

b) Dạng tổng quát của số chia hết cho 3 là: 3k

Dạng tổng quát của số chia hết cho 3 dư 1 là: 3k + 1

Dạng tổng quát của số chia hết cho 3 dư 2 là: 3k + 2

( Với k ∈ N)

9 tháng 7 2018

Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi

3 tháng 12 2021

a, Ta có:\(2a+b+5\left(a+4b\right)=2a+b+5a+20b=7a+21b=7\left(a+3b\right)⋮7\)

Mà \(2a+b⋮7\Rightarrow a+4b⋮7\)

b, Ta có:\(2\left(2a+b\right)+3a-2b=4a+2b+3a-2b=7a⋮7\)

Mà \(2a+b⋮7\Rightarrow3a-2b⋮7\)

13 tháng 7 2016

Để A là số chẵn thì * = { 0;2;4;6;8}

Để A là số lẻ thì * = { 1;3;5;7;9 }

Để A là số nguyên tố thì * = { 3;5;9}

Để A là hợp số thì * = { 1;2;4;6;7;8}