Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)
Ta lại có
\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)
\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)
\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)
\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)
\(=\left(a-b\right)^2\ge0\)
\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm
Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm
Vì pt đã cho là pt bậc 2 \(\Rightarrow a\ne0\)
Do x0 là nghiệm \(\Rightarrow-ax_0^2=bx_0+c\)
\(\Rightarrow-x_0^2=\frac{b}{a}x_0+\frac{c}{a}\)
\(\Rightarrow\left|-x_0\right|^2=\left|\frac{b}{a}x_0+\frac{c}{a}\right|\le\left|\frac{b}{a}\right|\left|x_0\right|+\left|\frac{c}{a}\right|\le M\left|x_0\right|+M\)
\(\Rightarrow\left|x_0\right|^2-1< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrow\left(\left|x_0\right|-1\right)\left(\left|x_0\right|+1\right)< M\left(\left|x_0\right|+1\right)\)
\(\Rightarrowđpcm\)
Có
https://hoc24.vn/hoi-dap/question/971994.html?auto=1
Giúp mình bài nay với