Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số y=(2m-3)x-5m+1 là hàm số bậc nhất thì \(2m-3\ne0\)
\(\Leftrightarrow2m\ne3\)
\(\Leftrightarrow m\ne\dfrac{3}{2}\)
a) Để hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(2m-3>0\)
\(\Leftrightarrow2m>3\)
hay \(m>\dfrac{3}{2}\)
Vậy: Khi hàm số y=(2m-3)x-5m+1 đồng biến trên R thì \(m>\dfrac{3}{2}\)
b) Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì \(\left\{{}\begin{matrix}2m-3=3\\-5m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=6\\-5m\ne4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-4}{5}\end{matrix}\right.\Leftrightarrow m=3\left(nhận\right)\)
Vậy: Để đồ thị hàm số y=(2m-3)x-5m+1 song song với đường thẳng y=3x+5 thì m=3
a. Tìm m để hàm số đồng biến.
Để hàm số trên đồng biến. => 2m-3 > 0
<=> 2m > 3
<=> m > 3/2
b. Tìm m để đồ thị hàm số (1) song song đường thẳng y=3x-5
Để đồ thị hàm số (1) song song đường thẳng y = 3x - 5
=> 2m-3 = 3 và -5m+1 khác - 5
<=> m = 3 và m khác 6/5
<=> m = 3 (tm)
c. Tính góc tạo bởi đường thẳng y=3x-5 với trục Ox
Gọi góc tạo bởi đường thẳng y=3x-5 với trục Ox là a (a>0)
=> tan a = |3|
=> tan a = 3
=> góc a = 71o 33'
2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được:
\(\left(m^2-2m+3\right)\cdot2-4=8\)
\(\Leftrightarrow2m^2-4m+6-4-8=0\)
\(\Leftrightarrow2m^2-4m-6=0\)
\(\Leftrightarrow2m^2-6m+2m-6=0\)
\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)
\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)
a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0
=>2m<-3
=>\(m< -\dfrac{3}{2}\)
b: Để (d)//(d1) thì
\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)
=>m=5
c: Thay y=5 vào y=3x-1, ta được:
3x-1=5
=>3x=6
=>x=6/3=2
Thay x=2 và y=5 vào (d), ta được:
\(2\left(2m+3\right)-2m+5=5\)
=>\(4m+6-2m+5=5\)
=>2m+11=5
=>2m=-6
=>m=-6/2=-3
d: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)
=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)
\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)
=>\(B\left(-2m+5;0\right)\)
\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)
\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)
=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)
=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)
=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)
=>\(4m^2-20m+25-4m-6=0\)
=>\(4m^2-24m+19=0\)
=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
\(1,\\ a,A\left(2;1\right)\in\left(d_m\right)\Leftrightarrow\dfrac{-2\left(m-1\right)+m+1}{2m-3}=1\\ \Leftrightarrow-2m+2+m+1=2m-3\\ \Leftrightarrow3m=6\Leftrightarrow m=2\\ b,\Leftrightarrow-\dfrac{m-1}{2m-3}>0\Leftrightarrow\dfrac{m-1}{2m-3}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1>0\\2m-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-1< 0\\2m-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< m< \dfrac{3}{2}\\ c,\left(\Delta\right):x-2y-12=0\Leftrightarrow2y=x-12\Leftrightarrow y=\dfrac{1}{2}x-6\\ \left(d_m\right)\text{//}\left(\Delta\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-m}{2m-3}=\dfrac{1}{2}\\\dfrac{m+1}{2m-3}\ne-6\end{matrix}\right.\Leftrightarrow m=\dfrac{5}{4}\)
\(2,\text{Gọi }M\left(x_0;y_0\right)\text{ là điểm cần tìm}\\ \Leftrightarrow y_0=\dfrac{1-m}{2m-3}x_0+\dfrac{m+1}{2m-3}\\ \Leftrightarrow y_0\left(2m-3\right)=x_0\left(1-m\right)+m+1\\ \Leftrightarrow x_0-mx_0+m+1-2my_0-3y_0=0\\ \Leftrightarrow m\left(1-x_0-2y_0\right)+\left(x_0-3y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+2y_0=1\\x_0-3y_0=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{5}\\y_0=\dfrac{2}{5}\end{matrix}\right.\\ \Leftrightarrow M\left(\dfrac{1}{5};\dfrac{2}{5}\right)\)
a, để hàm số nghịch biến thì \(2m+3< 0\Rightarrow m< -\dfrac{3}{2}\)
để hàm số đồng biến thì \(2m+3>0\Rightarrow m>-\dfrac{3}{2}\)
b, Để hàm số y = (2m+3)x-2 song song với đường thẳng y = -5x+3 thì
\(\left\{{}\begin{matrix}2m+3=-5\\-2\ne3\end{matrix}\right.\Rightarrow m=-4\)
a) Để hàm số y = (2m - 3)x - 1 // với đường thẳng y = -5x + 3
<=> \(\hept{\begin{cases}2m-3=-5\\-1\ne3\end{cases}}\)<=> 2m = -2 <=> m = -1
b) Hàm số y = (2m - 3)x - 1 đi qua điểm A(-1; 0) => x = -1 và y = 0
Do đó: 0 = (2m - 3).(-1) - 1 = 0 <=> 3 - 2m = 1 <=> 2m = 2 <=> m = 1
Vậy để đò thị hàm số đi qua A(-1; 0) <=> m = 0
c) Gọi tọa độ gđ của 3 đường thẳng y = (2m- 3 )x - 1 , y = 1 và y = 2x - 5 là (x0; y0)
Do đó: \(\hept{\begin{cases}y_0=\left(2m-3\right)x_0-1\\y_0=1\\y_0=2x_0-5\end{cases}}\) <=> \(\hept{\begin{cases}1=\left(2m-3\right)x_0-1\\2x_0-5=1\end{cases}}\)
<=> \(\hept{\begin{cases}\left(2m-3\right)x_0=2\\2x_0=6\end{cases}}\) <=> \(\hept{\begin{cases}\left(2m-3\right).3=2\\x_0=3\end{cases}}\) <=> 2m - 3 = 2/3 <=> 2m = 11/3 <=> m = 11/6
Vậy m = 11/6 thì đồ thị hàm số đã cho và các đường thẳng y = 0 và y = 2x - 5 đồng quy tại 1 điểm
a: Để hàm số đồng biến thì 2m-1>0
hay \(m>\dfrac{1}{2}\)
b: Để hai đồ thị song song thì \(\left\{{}\begin{matrix}m^2-1=3\\2m+1\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne2\end{matrix}\right.\)
hay m=-2