K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2021

\(1,\\ a,A\left(2;1\right)\in\left(d_m\right)\Leftrightarrow\dfrac{-2\left(m-1\right)+m+1}{2m-3}=1\\ \Leftrightarrow-2m+2+m+1=2m-3\\ \Leftrightarrow3m=6\Leftrightarrow m=2\\ b,\Leftrightarrow-\dfrac{m-1}{2m-3}>0\Leftrightarrow\dfrac{m-1}{2m-3}< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1>0\\2m-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}m-1< 0\\2m-3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< m< \dfrac{3}{2}\\ c,\left(\Delta\right):x-2y-12=0\Leftrightarrow2y=x-12\Leftrightarrow y=\dfrac{1}{2}x-6\\ \left(d_m\right)\text{//}\left(\Delta\right)\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-m}{2m-3}=\dfrac{1}{2}\\\dfrac{m+1}{2m-3}\ne-6\end{matrix}\right.\Leftrightarrow m=\dfrac{5}{4}\)

\(2,\text{Gọi }M\left(x_0;y_0\right)\text{ là điểm cần tìm}\\ \Leftrightarrow y_0=\dfrac{1-m}{2m-3}x_0+\dfrac{m+1}{2m-3}\\ \Leftrightarrow y_0\left(2m-3\right)=x_0\left(1-m\right)+m+1\\ \Leftrightarrow x_0-mx_0+m+1-2my_0-3y_0=0\\ \Leftrightarrow m\left(1-x_0-2y_0\right)+\left(x_0-3y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+2y_0=1\\x_0-3y_0=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\dfrac{1}{5}\\y_0=\dfrac{2}{5}\end{matrix}\right.\\ \Leftrightarrow M\left(\dfrac{1}{5};\dfrac{2}{5}\right)\)

7 tháng 9 2021

Chương 2: Hàm số bậc nhất

NV
14 tháng 3 2022

Gọi pt BC có dạng: \(y=ax+b\Rightarrow\left\{{}\begin{matrix}0=6a+b\\3=a.0+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=3\\a=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow y=-\dfrac{1}{2}x+3\)

Pt hoành độ giao điểm BC và d:

\(-\dfrac{1}{2}x+3=mx-2m+2\)

\(\Leftrightarrow m\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)=0\)

\(\Leftrightarrow\left(m+\dfrac{1}{2}\right)\left(x-2\right)=0\Rightarrow x=2\Rightarrow y=2\)

Vậy \(d_m\) luôn cắt BC tại điểm A cố định có tọa độ \(A\left(2;2\right)\)

b. Ta có: \(OB=\left|x_B\right|=6;OC=\left|y_C\right|=3\)

Từ A kẻ AH vuông góc trục hoành và AK vuông góc trục tung

\(\Rightarrow AH=\left|y_A\right|=2\) ; \(AK=\left|x_A\right|=2\)

\(S_{OAC}=\dfrac{1}{2}AK.OC=\dfrac{1}{2}.2.3=3\) ; \(S_{OAB}=\dfrac{1}{2}AH.OB=6\)

\(S_{OBC}=\dfrac{1}{2}OB.OC=9\)

Giả sử \(d_m\) cắt cạnh OC tại 1 điểm D nằm giữa O và C

\(\Rightarrow S_{ACD}=S_{OAC}-S_{OAD}< S_{OAC}=3< \dfrac{1}{2}S_{OBC}=9\) (ktm)

\(\Rightarrow d_m\) phải cắt cạnh OB tại 1 điểm D nào đó nằm giữa O và B

Khi đó: \(S_{ABD}=\dfrac{1}{2}S_{OBC}=\dfrac{9}{2}\)

Mà \(S_{ABD}=\dfrac{1}{2}AH.BD\Rightarrow BD=\dfrac{2S_{ABD}}{AH}=\dfrac{9}{2}\)

\(\Rightarrow x_B-x_D=\dfrac{9}{2}\Rightarrow x_D=6-\dfrac{9}{2}=\dfrac{3}{2}\)

\(\Rightarrow D\left(\dfrac{3}{2};0\right)\)

Do \(d_m\) qua D nên: \(\dfrac{3}{2}m-2m+2=0\Rightarrow m=4\)

NV
14 tháng 3 2022

undefined

11 tháng 3 2022

a, Gọi ptđt BC có dạng là y = ax + b ( a khác 0 ) 

\(\left\{{}\begin{matrix}6a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\left(tm\right)\\b=3\end{matrix}\right.\)

Vậy ptđt BC có dạng y = -1/2x + 3 

Hoành độ giao điểm tm pt 

\(mx-2m+2=-\dfrac{1}{2}x+3\)

\(\Leftrightarrow mx+\dfrac{1}{2}x-2m-1=0\)

\(\Leftrightarrow x\left(m+\dfrac{1}{2}\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m+\dfrac{1}{2}}\)

\(\Rightarrow y=-\dfrac{1}{2}.\dfrac{2m+1}{m+\dfrac{1}{2}}+3\Leftrightarrow y=\dfrac{-\left(2m+1\right)}{2\left(m+\dfrac{1}{2}\right)}+\dfrac{6\left(m+\dfrac{1}{2}\right)}{2\left(m+\dfrac{1}{2}\right)}\)

\(=\dfrac{-2m-1+6m+3}{2\left(m+\dfrac{1}{2}\right)}=\dfrac{4m+2}{2\left(m+\dfrac{1}{2}\right)}=\dfrac{2m+1}{m+\dfrac{1}{2}}\)

Vậy dm cắt BC tại \(A\left(\dfrac{2m+1}{m+\dfrac{1}{2}};\dfrac{2m+1}{m+\dfrac{1}{2}}\right)\)

 

11 tháng 3 2022

câu B được không bạn.?

17 tháng 12 2021

1.

\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)

Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)

\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)

2.

Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)

18 tháng 12 2021

mình cảm ơn bạn nhiều nha 

15 tháng 12 2016

Ta biết đổi lại thành \(y\left(2m-2\right)=\left(m+3\right)-\left(m-1\right)x\)

a/ Để đths song song với (d) : \(y=\frac{3x-1}{2}=\frac{3}{2}x-\frac{1}{2}\)thì \(\begin{cases}2m-2\ne0\\m+3\ne-\frac{1}{2}\\-\left(m-1\right)=\frac{3}{2}\end{cases}\) \(\Leftrightarrow m=-\frac{1}{2}\) (thỏa mãn)

Còn lại tương tự.

b/ Gọi điểm cố định là \(N\left(x_0;y_0\right)\)

Vì đths đi qua N nên \(\left(m-1\right)x_0+\left(2m-2\right)y_0=m+3\Leftrightarrow m\left(x_0+2y_0-1\right)-\left(x_0+2y_0+3\right)=0\)

Để N là điểm cố định thỏa mãn thì

\(\begin{cases}x_0+2y_0-1=0\\x_0+2y_0+3=0\end{cases}\) . Hệ này vô nghiệm.

Vậy không có điểm cố định.

26 tháng 12 2020

2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được: 

\(\left(m^2-2m+3\right)\cdot2-4=8\)

\(\Leftrightarrow2m^2-4m+6-4-8=0\)

\(\Leftrightarrow2m^2-4m-6=0\)

\(\Leftrightarrow2m^2-6m+2m-6=0\)

\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)

\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)