K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

3x+2 x-1 3 3x-3 5

3x+2 chia hết cho x-1 <=> x-1 là ước của 5

<=> (x-1) \(\in\)\(\left\{1:5:-1:-5\right\}\)

x-1 -5 -1 1 5
x -4 0 2 6

a) Đặt F(x)=0

\(3x^2-6x+3x^3=0\)

\(\Leftrightarrow3x^3+3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)

mà 3>0

nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)

Vậy: Sf(x)={0;-2;1}(1)

c) Thay x=0 vào đa thức g(x), ta được:

\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)

\(=-9+0+0+0=-9\)

mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)

Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

27 tháng 8 2020

viết lại 1 a) l 1/2xl =3 - 2x

27 tháng 8 2020

1.a) ĐK : \(3-2x\ge0\forall x\Rightarrow x\le\frac{3}{2}\)

Khi đó :  \(\left|\frac{1}{2}x\right|=3-2x\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=3\\\frac{3}{2}x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=2\end{cases}}\left(tm\right)\)

Vậy \(x\in\left\{\frac{6}{5};2\right\}\)

b) ĐK : \(3x+2\ge0\Rightarrow x\ge\frac{-2}{3}\)

Khi đó : \(\left|x-1\right|=3x+2\Leftrightarrow\orbr{\begin{cases}x-1=3x+2\\x-1=-3x-2\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=3\\4x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1,5\\x=-0,25\left(tm\right)\end{cases}}\)

Vậy x = -0,25

c) ĐKXĐ : \(x-12\ge0\Rightarrow x\ge12\)

Khi đó |5x| = x - 12

<=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\Rightarrow\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\left(\text{loại}\right)\)

Vậy \(x\in\varnothing\)

d) ĐK :  \(5x+1\ge0\Rightarrow x\ge-\frac{1}{5}\)

Khi đó \(\left|17-x\right|=5x+1\Leftrightarrow\orbr{\begin{cases}17-x=5x+1\\17-x=-5x-1\end{cases}}\Rightarrow\orbr{\begin{cases}6x=16\\-4x=18\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\left(tm\right)\\x=-4,5\left(\text{loại}\right)\end{cases}}\)

Vậy x = 8/3 

Tóm lại : Cách làm là 

|f(x)| = g(x)

ĐK : g(x) \(\ge0\)

=> \(\orbr{\begin{cases}f\left(x\right)=-g\left(x\right)\\f\left(x\right)=g\left(x\right)\end{cases}}\)

Bạn tự làm tiếp đi ak

AH
Akai Haruma
Giáo viên
7 tháng 8 2019

Lời giải:

Ta có:

\(f(x)=g(x)-h(x)=(4x^2+3x+1)-(3x^2-2x-3)=x^2+5x+4\)

a)

\(f(-4)=(-4)^2+5(-4)+4=0\) nên $-4$ là nghiệm của $f(x)$

b)

\(f(x)=0\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow x(x+4)+(x+4)=0\)

\(\Leftrightarrow (x+1)(x+4)=0\Rightarrow \left[\begin{matrix} x+1=0\\ x+4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=-4\end{matrix}\right.\)

Vậy tập hợp nghiệm của $f(x)$ là $\left\{-1;-4\right\}$

15 tháng 12 2017

a) vì | x + \(\frac{5}{3}\)\(\ge\)0 nên A = | x + \(\frac{5}{3}\)| + 112 \(\ge\)112

dấu " = " xảy ra khi | x + \(\frac{5}{3}\)| = 0 hay x = \(\frac{-5}{3}\)

\(\Rightarrow\)GTNN của A là 112 khi | x + \(\frac{5}{3}\) | = 0 hay x = \(\frac{-5}{3}\)

b) B = | x - 2,7 | + | x + 8,5 |

B = | 2,7 - x | + | x + 8,5 | \(\ge\)| 2,7 - x + x + 8,5 | = 11,2

\(\Rightarrow\)GTNN của B là 11,2 khi ( 2,7 - x ) . ( x + 8,5 ) \(\ge\)0 hay -8,5 \(\le\)\(\le\)2,7

c) C = \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|2x+\frac{1}{4}\right|\)

C = \(\left|x+\frac{1}{2}\right|+\left|-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|\)\(\ge\)\(\left|x+\frac{1}{2}-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|=\frac{1}{6}+\left|2x+\frac{1}{4}\right|\ge\frac{1}{6}\)

\(\Rightarrow\)GTNN  của C là \(\frac{1}{6}\)khi \(\hept{\begin{cases}2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\\\left(x+\frac{1}{2}\right).\left(-\frac{1}{3}-x\right)\ge0\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{3}\end{cases}}\)