K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

a) \(F=x^2-8x+28=x^2-8x+16+12\)\(12\)\(=\left(x-4\right)^2+12\)

Vì \(\left(x-4\right)^2\ge0\forall x\)nên  F \(\ge\)12

Vậy giá trị nhỏ nhất của F là 12 khi x-4=0 hay x=4

b) \(E=6x-x^2+1=-\left(x^2-6x-1\right)\)\(=-\left(x^2-6x+9-10\right)\)\(=10-\left(x-3\right)^2\)

Vì \(-\left(x-3\right)^2\le0\forall x\)nên E \(\le\)10

Vậy giá trị lớn nhất của E là 10 khi x-3=0 hay x=3

3 tháng 8 2019

a, F = x2 - 8x + 28

= x2 - 2.x.4 + 42 +12

= (x - 4)2 + 12 >= 12 

=>MinF = 12 <=> x = 4

b,E = 6x - x2 + 1

= -( x2 - 6x - 1)

= -( x2 - 2.x.3 + 32 - 8)

= -[(x - 3)2 -8]

= -(x - 3)2 + 8 <= 8

=>MaxE = 8 <=> x = 3