Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8 : \(a+b=15\)
\(\Rightarrow a=15-b\)
Ta có ; \(ax+ay+bx+by=15\)
\(\Rightarrow a.\left(x+y\right)+b.\left(x+y\right)=15\)
\(\Rightarrow\left(15-b\right).\left(-10\right)+b.\left(-10\right)=15\)
\(\Rightarrow10b-150-10b=15\)
\(\Rightarrow-150=15\)
Vậy : Không biểu thức trên không có giá trị .
Bài 8:
ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)
Thay a+b=15, x+y=-10, ta có:
(a+b)(x+y)=15.(-10)=-150
Bài 9:
Từ đề bài, suy ra:
(2x+3)(y-1)=-1.6=-2.3=-3.2=-6.1
Ta có:
Nếu 2x+3=-1,y-1=6 thì x=-2,y=7(thỏa mãn)
Nếu 2x+3=6,y-1=-1 thì x= 3/2,y=0(loại)
Nếu 2x+3=-2,y-1=3 thì x=-5/2,y=4(loại)
Nếu 2x+3=3,y-1=-2 thì x=0,y=-1(thỏa mãn)
Nếu 2x+3=-3,y-1=2 thì x=-3,y=3(thỏa mãn)
Nếu 2x+3=2,,y-1=-3 thì x=-1/2,y=y=-2(loại)
Nếu 2x+3=-6,y-1=1 thì x=-9/2,y=2(loại)
Nếu 2x+3=1,y-1=-6 thì x=-1,y=-5(thỏa mãn)
Vậy(x,y)\(\in\){(-2,7);(0,-1);(-3,3);(-1,-5)}
Bài 10:
a)9,0,-1
b)0,9,7
a) (x-3)(x-5). Thay vào, ta có:
[(-2)-3][(-2)+5]
=(-5)3
=-15
b) Tính nhanh
191+192+193+194+195-91-92-93-94-95
=(191-91)+(192-92)+(193-93)+(194-94)+(195-95)
=100+100+100+100+100
=100.5
=500
c) mÌnh ko bít
d) Mình ko bít
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3