K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

A= \(\frac{1}{2}\)[sin(-10)+sin90] +\(\frac{1}{2}\)(sin10+sin90)

A= \(\frac{1}{2}\)(-sin10 +1) +\(\frac{1}{2}\)(sin10 +1)

A=\(\frac{1}{2}\)(-sin10+sin10)+1

A= 1

19 tháng 10 2019

cos 50=sin 40(2 góc phụ nhau)

50>40=>sin 50> sin 40=> sin 50> cos 50 (1)

sin 50<1 (2)

tan 50 =sin50/cos 50=sin50 / sin40 > 1(tử lớn hơn mẫu)=>tan 50>1 (3)

(1)(2)(3)=> tan50>sin50>cos50

19 tháng 10 2019

cos50 = sin40

<=> cos50 < sin50

tan50=cot40

:v.... sao k thấy lq j hết

a: \(\sin25^0< \sin70^0\)

b: \(\cos40^0>\cos75^0\)

c: \(\sin38^0=\cos52^0< \cos27^0\)

d: \(\sin50^0=\cos40^0>\cos50^0\)

7 tháng 10 2020

Ta có: \(\sin10^0+\sin40^0-\cos50^0-\cos80^0\)

\(=\left(\sin10^0-\cos80^0\right)+\left(\sin40^0-\cos50^0\right)\)

\(=\left(\cos80^0-\cos80^0\right)+\left(\cos50^0-\cos50^0\right)\)

\(=0\)

7 tháng 10 2020

\(\sin10^0+\sin40^0-\cos50^0-\cos80^0=0\)0

1 tháng 2 2018

hỏi đáp trước

Bao

Giờ

lên

lp

9

tôi

giải

cho

hihi

?

10 tháng 8 2018

hả

cái đầu bài kiểu j z

26 tháng 9 2017

a) \(sin40^o-cos50^o=cos50^o-cos50^o=0\)

b) \(sin^230^o+sin^240^o+sin^250^o+sin^260^o\)

= \(sin^230^o+sin^260^o+sin^240^o+sin^250^o\)

= \(sin^230^o+cos^230^o+sin^240^o+cos^240^o\)

= \(1+1=2\)

a) Gợi ý: Hai góc phụ nhau thì có sin góc này bằng cos góc kia.

vd: \(sin30^o=cos70^o\)

b) Gợi ý: \(sin^2+cos^2=1\)

30 tháng 7 2018

Giải:

\(A=\sin10+\sin40-\cos50-\cos80\)

\(\Leftrightarrow A=\cos80+\cos50-\cos50-\cos80\)

\(\Leftrightarrow A=0\)

Vậy ...

\(B=\cos15+\cos25-\sin65-\sin75\)

\(\Leftrightarrow B=\sin75+\sin65-\sin65-\sin75\)

\(\Leftrightarrow B=0\)

Vậy ...

\(C=\dfrac{\tan27.\tan63}{\cot63.\cot27}\)

\(\Leftrightarrow C=\dfrac{\tan27.\tan63}{\tan27.\tan63}\)

\(\Leftrightarrow C=1\)

Vậy ...

\(D=\dfrac{\cot20.\cot45.\cot70}{\tan20.\tan45.\tan70}\)

\(\Leftrightarrow D=\dfrac{\cot20.\cot45.\cot70}{\cot70.\cot45.\cot20}\)

\(\Leftrightarrow D=1\)

Vậy ...