K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(M=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1\)

\(=a-\sqrt{a}\)

11 tháng 8 2021

?? mẫu số chung đâu rồi ạ

Sửa đề: \(B=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)

\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)

\(=\sqrt{a-1}+1+1-\sqrt{a-1}=2\)

5 tháng 8 2023

Căn mỗi a thôi bn k căn 1 

7 tháng 10 2021

a) \(\sqrt{0,64.a^2}\left(a>0\right)=0,8.\left|a\right|=0,8a\)

b) \(\sqrt{a^2\left(a-2\right)^2}\left(a>2\right)=\left|a\left(a-2\right)\right|=a\left(a-2\right)=a^2-2a\)

c) \(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\left(a\ge0,a\ne1\right)=\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}=1+\sqrt{a}+a\)

11 tháng 12 2021

=-3x-105

12 tháng 12 2021

Z là hết rr ak

 

24 tháng 10 2021

d: \(\dfrac{-\left(\sqrt{3}-\sqrt{6}\right)}{1-\sqrt{2}}+\dfrac{6\sqrt{3}+3}{\sqrt{3}}-\dfrac{13}{4+\sqrt{3}}\)

\(=-\sqrt{3}+6+\sqrt{3}-4+\sqrt{3}\)

\(=2+\sqrt{3}\)

10 tháng 10 2023

loading...  loading...  

30 tháng 8 2021

\(A=\dfrac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{x-x+1}=-2\sqrt{x-1}\)

30 tháng 9 2017

\(\left(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\right)-\left(5-\frac{2\sqrt{6}}{\sqrt{3}}-\sqrt{2}\right)\)

=\(5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}-5+\frac{2\sqrt{6}}{\sqrt{3}}+\sqrt{2}\)

=\(\left(5-5\right)+\left(\frac{2\sqrt{6}}{\sqrt{3}}+\frac{2\sqrt{6}}{\sqrt{3}}\right)+\left(\sqrt{2}+\sqrt{2}\right)\)

=\(0+\frac{4\sqrt{6}}{\sqrt{3}}+2\sqrt{2}\)

=\(\frac{4\sqrt{2}.\sqrt{3}}{\sqrt{3}}+2\sqrt{2}\)

=\(4\sqrt{2}+2\sqrt{2}\)

=\(6\sqrt{2}\)

26 tháng 7 2020

\(ĐKXĐ:x\ge4\)

\(\sqrt{x+4\sqrt{x-4}}-\sqrt{x-4}=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}-\sqrt{x-4}\)

\(=\sqrt{\left(\sqrt{x-4}\right)^2+2.2\sqrt{x-4}+2^2}-\sqrt{x-4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}-\sqrt{x-4}=\left|\sqrt{x-4}+2\right|-\sqrt{x-4}\)

\(=\sqrt{x-4}+2-\sqrt{x-4}=2\)( vì \(x\ge4\)nên \(\sqrt{x-4}\ge0\))