Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)
a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0
TH2 3x-4=0 <=>x=4/3
KL:.....
b) (x+3)(x−1)+2x(x+3)=0.
<=> (x+3)(x-1+2x)=0
TH1: x+3=0 <=> x=-3
TH2 x-1=0 <=> x=1
KL:.....
c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 \)
KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)
KL:....
a) \(3x^2-4x=0\)
\(\Leftrightarrow x\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)
b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)
c) \(9x^2+6x+1=0\)
\(\Leftrightarrow\left(3x+1\right)^2=0\)
\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)
d) \(x^2-4x=4\)
\(\Leftrightarrow\left(x-2\right)^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)
\(b,P=\left[\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-1\right]:\dfrac{9-x^2+\left(x-3\right)\left(x+3\right)-\left(x-2\right)^2}{\left(x-2\right)\left(x+3\right)}\left(x\ne\pm3;x\ne2\right)\\ P=\left(\dfrac{x}{x+3}-1\right)\cdot\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2+x^2-9-\left(x-2\right)^2}\\ P=\dfrac{x-x-3}{x+3}\cdot\dfrac{\left(x-2\right)\left(x+3\right)}{-\left(x-2\right)^2}\\ P=\dfrac{-3}{-\left(x-2\right)}=\dfrac{3}{x-2}\)
Với \(x^3-4x=0\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\left(ktm\right)\\x=-2\end{matrix}\right.\)
Với \(x=0\Leftrightarrow P=\dfrac{3}{0-2}=-\dfrac{3}{2}\)
Với \(x=-2\Leftrightarrow P=\dfrac{3}{-2-2}=-\dfrac{3}{4}\)
câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!
vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)
\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)
\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)
Chúc bạn học tốt!!
d/
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
e/
\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)
\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
a)\(\left(x^2+1\right)\left(x^2-4x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-1\left(vn\right)\\\left(x-2\right)^2=0\end{cases}\Rightarrow}x=2}\)
b)\(\left(3x-2\right)\left(\frac{2x+6}{7}-\frac{4x-3}{5}\right)=0\\ \Rightarrow\left(3x-2\right)\left(\frac{10x+30-28x+21}{35}\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(\frac{-18x+51}{35}\right)=0\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)
c)\(\left(3,3-11x\right)\left(\frac{21x+6+10-30x}{15}\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{16}{9}\end{cases}}\)
a) Ta có: \(\left(x^2+3x+2\right)^2=\left(x^2-x-2\right)^2\)
\(\Leftrightarrow\left(x^2+3x+2\right)^2-\left(x^2-x-2\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x+2-x^2+x+2\right)\left(x^2+3x+2+x^2-x-2\right)=0\)
\(\Leftrightarrow\left(4x+4\right)\left(2x^2+2x\right)=0\)
\(\Leftrightarrow4\left(x+1\right)\cdot2x\cdot\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy: S={0;-1}
b) Ta có: \(x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy: S={-1;2;-2}