Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{15}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le\frac{-33}{15}:\frac{21}{15}\)
=> \(-10\le x\le\frac{-11}{7}\)
=> \(x\in\left\{-10;-9,-8,-7,-6,-5,-4,-3,-2,-1\right\}\)
a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)0\) \(x+\frac{3}{7}-\frac{3}{7}\) \(x
a) Với mọi \(x,y\in Q\), ta luôn luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) ; \(y\le\left|y\right|\) và \(-y\le\left|y\right|\)
Suy ra \(x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
hay \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
b) Theo câu a ta có:
\(\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) ,suy ra \(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)
\(\frac{3}{7}\cdot15\cdot\frac{1}{3}+\frac{3}{7}\cdot5\cdot\frac{2}{5}\le x\le\left(3\frac{1}{2}:7-6\frac{1}{2}\right)\cdot\left(-2\frac{1}{3}\right)\)
\(\Leftrightarrow\frac{15}{7}+\frac{6}{7}\le x\le-6\cdot\frac{-5}{3}\)
\(\Leftrightarrow3\le x\le10\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
a)
+) Ta có: a=3128 suy ra \(x = 3130\).
\(\left| {a - x} \right| = \left| {3128 - 3130} \right| = \left| { - 2} \right| = 2 \le 5\)
Vậy \(\left| {a - x} \right| \le 5\).
+) Ta có:
\(\begin{array}{l}x - 5 = 3128 - 5 = 3123\\x + 5 = 3128 + 5 = 3133\end{array}\)
Nên \(x - 5 \le a \le x + 5\)
b) Do y là số làm tròn đến hàng phần trăm của \(\frac{1}{3}\) nên \(y = 0,33\).
Ta có: \(\left| {\frac{1}{3} - y} \right| = \left| {\frac{1}{3} - 0,33} \right| = \left| {\frac{1}{{300}}} \right| = \frac{1}{{300}} = 0,00\left( 3 \right) \le 0,005\).
Nên \(\left| {\frac{1}{3} - y} \right| \le 0,005\).