K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

<=> \(\frac{7}{8x}+\frac{5-x}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)(DK: x khác 0 và 2)

<=>\(\frac{7x\left(x-2\right)}{8x\left(x-2\right)}+\frac{10-2x}{8x\left(x-2\right)}=\frac{4x-4}{8x\left(x-2\right)}=\frac{x}{8x\left(x-2\right)}\)

<=>\(7x^2-14x+10-2x=4x-4+x\)

<=>\(7x^2-14x-2x-4x-x=-4-10\)

<=>\(7x^2-21x+14=0\)

<=>\(7\left(x^2-3x+2\right)=0\)

<=>\(x^2-3x+2=0\)

<=>\(x^2-x-2x+2=0\)

<=>\(x\left(x-1\right)-2\left(x-1\right)=0\)

<=>\(\left(x-1\right)\left(x-2\right)=0\)

<=>\(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(TMDK\right)\\x=2\left(KTMDK\right)\end{cases}}\)

Vậy: x=1

23 tháng 6 2019

ĐK: ...

c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)( ko t/m )

d) tương tự, ngại tính lắm

e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)

\(\Leftrightarrow4x^2-3x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)

12 tháng 4 2020

\(\frac{7}{8x}+\frac{5-x}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\\ =>\frac{7}{8x}+\frac{5-x}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\\ =>\frac{7\left(x-2\right)}{8x\left(x-2\right)}+\frac{10-2x}{8x\left(x-2\right)}=\frac{4x-4}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\\ =>7x-14+10-2x=4x-4+x\\ =>7x-2x-4x-x=-4+14-10\\ \)

=>0x=0

=> ptvsn

chúc bn hk tốt

#Mai.T.Loan

12 tháng 4 2020

T cũng giải đc vô nghiệm mà bấm máy lại có nghiệm

5 tháng 5 2019

\(\frac{2x+1}{x^2-5x+4}+\frac{5}{x-1}=\frac{2}{x-4}\)ĐKXĐ : \(x\ne1;4\)

\(\Leftrightarrow\frac{2x+1}{\left(x-1\right)\left(x-4\right)}+\frac{5\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-4\right)}\)

\(\Leftrightarrow2x+1+5x-20=2x-2\)

\(\Leftrightarrow2x+5x-2x=-1+20-2\)

\(\Leftrightarrow5x=17\)

\(\Leftrightarrow x=\frac{17}{5}\)

KL : Nghiệm của PT là S={ 17/5 }

5 tháng 5 2019

\(\frac{7}{8x}-\frac{x-5}{4x^2-8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) ĐKXĐ : \(x\ne0;2\)

\(\Leftrightarrow\frac{7}{8x}-\frac{x-5}{4x\left(x-2\right)}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow\frac{7\left(x-2\right)}{8x\left(x-2\right)}-\frac{2\left(x-5\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)

\(\Leftrightarrow7x-14-2x+10=4x-4+x\)

\(\Leftrightarrow7x-2x-4x-x=14-10-4\)

\(\Leftrightarrow0x=0\)

=> PT vô số nghiệm 

9 tháng 5 2020

a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

ĐKXĐ: x≠1/4, x≠-1/4

\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)

\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)

⇒-12x-3=8x-2-3-6x

⇔8x-6x+12x=-3+2+3

⇔14x=2

⇔x=1/7(tmđk)

Vậy phương trình có nghiệm là x=1/7

b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)

ĐKXĐ: x≠0, x≠2

(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)

⇒10-2x+7x-14=4x-4+x

⇔-2x+7x-4x-x=-4-10+14

⇔0x=0

⇔ x∈R

Vậy phương trình có nghiệm là x∈R và x≠0, x≠2

c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)

ĐKXĐ: x≠0

(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3

⇔x4+x-x4+x=3

⇔2x=3

⇔x=3/2(tmđk)

Vậy phương trình có nghiệm là x=3/2

13 tháng 2 2020

\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)

\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)

\(\Leftrightarrow x^2+11x+28=54\)

\(\Leftrightarrow x^2+11x-26=0\)

Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)

Vậy tập nghiệm S =  {2;-13}