K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}+\frac{-\left(x+3\right)}{x-2}-\frac{2x+1}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}+\frac{-\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(2x-9\right)-\left(x^2-9\right)+\left(2x^2-3x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}=\frac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+1}{x-3}\)

b) \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{x+1}{x-3}=\frac{1}{2}\)\(\Leftrightarrow2\left(x+1\right)=x-3\)

\(\Leftrightarrow2x+2=x-3\)\(\Leftrightarrow2x-x=-3-2\)

\(\Leftrightarrow x=-5\)

Vậy \(A=\frac{1}{2}\Leftrightarrow x=-5\)

c) Xem lại đề 

18 tháng 1 2021

\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

\(A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\frac{2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

b) Ta có : \(A=\frac{x+4}{x-3}=\frac{x-3+7}{x-3}=1+\frac{7}{x-3}\)

Để A đạt giá trị nguyên thì \(\frac{7}{x-3}\)đạt giá trị nguyên

=> 7 ⋮ x - 3

=> x - 3 ∈ Ư(7) = { ±1 ; ±7 }

x-31-17-7
x4210-4

So với ĐKXĐ ta thấy x = 4 , x = 10 , x = -4 thỏa mãn 

Vậy với x ∈ { ±4 ; 10 } thì A đạt giá trị nguyên

18 tháng 1 2021

(....) dùng để nhìn được chữ số ở phân số cuối cùng thôi, ko dùng để làm gì.

( ác ) là từ ( các ) 

(gia strij) là từ ( giá trị )

19 tháng 12 2016

1)

ĐKXĐ: x\(\ne\)3

ta có :

\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)

để biểu thức A có giá trị = 1

thì :\(\frac{x-3}{2}\)=1

=>x-3 =2

=>x=5(thoả mãn điều kiện xác định)

vậy để biểu thức A có giá trị = 1 thì x=5

30 tháng 12 2016

1)

\(A=\frac{x^2-6x+9}{2x-6}\)

A xác định

\(\Leftrightarrow2x-6\ne0\)

\(\Leftrightarrow2x\ne6\)

\(\Leftrightarrow x\ne3\)

Để A = 1

\(\Leftrightarrow x^2-6x+9=2x-6\)

\(\Leftrightarrow x^2-6x-2x=-6-9\)

\(\Leftrightarrow x^2-8x=-15\)

\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)

14 tháng 8 2018

khó quá tui ko biết làm..

k cho tui nha

thanks

10 tháng 7 2017

ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)

a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)

Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)

b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)

P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)

So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên

5 tháng 7 2017

a/ ĐK x-1 khác 0 ; x^2+x khác 0 ; x^3-x khác 0 ; 1-x^2 khác 0 

=> x khác {1;0;-1} 

b/ \(B=\frac{1}{x-1}-\frac{x^3-x}{x^2+x}.\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)

\(=\frac{1}{x-1}-\frac{x\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}.\left(\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(1+x\right)\left(1-x\right)}\right)\)

\(=\frac{1}{x-1}-\left(x-1\right).\left(\frac{1+x-x+1}{\left(x-1\right)^2\left(1+x\right)}\right)=\frac{1}{x-1}-\frac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x+1-1}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x^2-1}\)

19 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

a) \(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

\(\Leftrightarrow A=\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

\(\Leftrightarrow A=x-1+x+1-3\)

\(\Leftrightarrow A=2x-3\)

b) Thay x = 3 vào A, ta được :

\(A=2.3-3=3\)

Thay x = 0 vào A, ta được :

\(A=2.0-3=-3\)

c) Để A = 2

\(\Leftrightarrow2x-3=2\)

\(\Leftrightarrow2x=5\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy để \(A=2\Leftrightarrow x=\frac{5}{2}\)