\(\frac{15-2x}{6-x}\)

a, Tìm x để A có giá trị bằng \(\fra...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2015

a) A =1/2  => 2( 15 -2x ) =6- x

               => 4x -x = 30 -6 => 3x =24  => x =8

b) \(A=\frac{2x-15}{x-6}=2-\frac{3}{x-6}\)

 A thuộc Z => x -6 thuộc Ư(3) ={ -3;-1;1;3}

 Max A = 2 +3  =5  khi x - 6 = -1 => x =5

28 tháng 8 2016

a) \(A=\left|x-\frac{2}{3}\right|-4\)

Có: \(\left|x-\frac{2}{3}\right|\ge0\)

\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)

Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)

Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\)  ( K có GTLN bạn nhé )

b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)

Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)

Vậy:  \(Max_B=2\) tại \(x=-\frac{5}{6}\)

  \(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)

\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)

Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)

Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

25 tháng 5 2018

a) Ta có : 

\(A=\frac{3.\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3.\left(x-1\right)^2+3.2+6}{\left(x-1\right)^2+2}=\frac{3.\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để A có giá trị nguyên \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)\(\in\)\(\Leftrightarrow\)( x - 1 )2 + 2 \(\in\)Ư ( 6 )

\(\Rightarrow\)( x - 1 )2 + 2 \(\in\){ 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }

Lập bảng ta có :

(x-1)2+21-12-23-36-6
xloạiloại0loại\(\orbr{\begin{cases}2\\0\end{cases}}\)loại\(\orbr{\begin{cases}3\\-1\end{cases}}\)loại

Vậy x = { 0 ; 2 ; 3 ; -1 }

b) để A có giá trị lớn nhất \(\Leftrightarrow\)\(3+\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)^2+2}\)có GTLN \(\Leftrightarrow\)( x - 1 )2 +2 có GTNN

Mà ( x - 1 )2 \(\ge\)\(\Rightarrow\)( x - 1 )2 + 2 \(\ge\)\(\Rightarrow\)GTNN của ( x - 1 )2 + 2 là 2 \(\Leftrightarrow\)x = 1

Vậy A có GTLN là : \(\frac{3.\left(1-1\right)^2+12}{\left(1-1\right)^2+2}=\frac{12}{2}=6\)\(\Leftrightarrow\)x = 1

9 tháng 7 2018

a, \(A=\frac{3\left(x-1\right)^2+12}{\left(x-1\right)^2+2}=\frac{3\left[\left(x-1\right)^2+2\right]+6}{\left(x-1\right)^2+2}=3+\frac{6}{\left(x-1\right)^2+2}\)

Để \(A\in Z\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Mà \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+2\ge2\)

\(\Rightarrow\left(x-1\right)^2+2\in\left\{2;3;6\right\}\)

Ta có bảng:

(x - 1)2 + 2236
x123

Vậy...

b, Theo câu a ta có: \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{1}{\left(x-1\right)^2+2}\le\frac{1}{2}\Rightarrow\frac{6}{\left(x-1\right)^2+2}\le\frac{6}{2}=3\)

Dấu "=" xảy ra  khi x - 1 = 0 <=> x = 1

Vậy GTLN của A = 3 khi x = 1

10 tháng 7 2018

sr câu b mình lm thiếu

Theo câu a ....

=> \(A\le3+3=6\)

Dấu "=" xảy ra khi x=1

Vậy GTLN của A = 6 khi x=1

15 tháng 1 2020

phân tích là dc mà. khi tìm dc x thì thay vào ...cái nào lớn nhất thì lấy

vì mk ko vt dc phân số... thông cảm

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}

1 tháng 2 2020

a) \(A=\frac{3}{2-x}\)

Điều kiện x\(\in Z;x\ne2\)

A lớn nhất \(\Leftrightarrow\frac{3}{2-x}\) lớn nhất

+) Với \(\hept{\begin{cases}x\in Z\\2-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\in Z\\x< 2\end{cases}}\)

                                        \(\Leftrightarrow\frac{3}{2-x}< 0\)

                               \(\Leftrightarrow B< 0\)

+) Với \(\hept{\begin{cases}x\in Z\\2-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\in Z\\x>2\end{cases}}\)

\(\Rightarrow\) Phân số  \(\frac{3}{2-x}\) dương có tử và mẫu dương ( tử ko đổi)

\(\Rightarrow\) Phân số \(\frac{3}{2-x}\)lớn nhất \(\Leftrightarrow\) mẫu 2-x là số nguyên dương nhỏ nhất  

                                                         \(\Leftrightarrow2-x=1\)

                                                      \(\Leftrightarrow x=1\)               ( thỏa mãn điều kiện)

Với x = 1 thì A = 3

Vậy Max A  = 3 \(\Leftrightarrow\) x = 1

                                  

a) ĐK: \(x\ne2\)

Nhận xét: với x>2 thì \(A=\frac{3}{2-x}< 0\)

Với \(x\le1\)\(\Leftrightarrow\)\(A=\frac{3}{2-x}\le3\)

dễ thấy 3>0 nên GTLN của A=3 khi x=1 

b) ĐK: \(x\ne7\)

\(B=\frac{35-3x}{7-x}=3+\frac{14}{7-x}\)

để B lớn nhất thì \(\frac{14}{7-x}\) lớn nhất hay 7-x nguyên dương nhỏ nhất => \(7-x=1\)\(\Leftrightarrow\)\(x=6\) ( thoả đk ) 

thay x=6 vào B ta được B=17

vậy GTLN của B=17 khi x=6