Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1+\dfrac{1}{5}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{3}+\dfrac{3}{15}+\dfrac{3}{35}+...+\dfrac{3}{9999}\\ =\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}\)
\(x=-\frac{1}{5}:5=-\frac{1}{25}\)
c) \(\frac{5}{3}-x=7+\frac{4}{5}\)
\(\frac{5}{3}-x=\frac{39}{5}\)
\(x=\frac{5}{3}-\frac{39}{5}=-\frac{92}{15}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}+\frac{5}{11}\)
\(2x=\frac{17}{22}\)
\(x=\frac{17}{22}:2\)
\(x=\frac{17}{44}\)
\(x=-\frac{1}{5}:5\)
NÈ BẠN!!!
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{25}{35}+\frac{28}{35}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}+\frac{11}{5}\)
\(5x=2\)
\(x=\frac{2}{5}\)
c)\(\frac{5}{3}-x=7\)
\(x=\frac{5}{3}-7=\frac{5}{3}-\frac{21}{3}=-\frac{16}{3}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}-\frac{-5}{11}=\frac{7}{22}-\frac{-10}{22}=\frac{17}{22}\)
\(x=\frac{17}{22}:2=\frac{17}{22}\cdot\frac{1}{2}=\frac{17}{44}\)
K CHO MÌNH NHA!!!
A)=vậy\(\frac{2014}{2015}+\frac{2015}{2014}>\frac{666665}{333333}.\)
bạn nhé
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
k nha
a/ \(\left|5x+\frac{3}{4}\right|-\frac{5}{4}=2\)
\(\left|5x+\frac{3}{4}\right|=\frac{13}{4}\)
- / \(5x+\frac{3}{4}=\frac{13}{4}\)
\(5x=\frac{5}{2}\)
\(x=\frac{1}{2}\) - / \(5x+\frac{3}{4}=-\frac{13}{4}\)
\(5x=-4\)
\(x=-\frac{4}{5}\)
\(\Rightarrow x=\left\{\frac{1}{2};-\frac{4}{5}\right\}\)
b/\(\frac{3}{2}-\left|\frac{1}{2}x+1\right|=\frac{1}{4}\)
\(\left|\frac{1}{2}x+1\right|=\frac{5}{4}\)
1/\(\frac{1}{2}x+1=\frac{5}{4}\)
\(\frac{1}{2}x=\frac{1}{4}\)
\(x=\frac{1}{2}\)
2/\(\frac{1}{2}x+1=-\frac{5}{4}\)
\(\frac{1}{2}x=-\frac{9}{4}\)
\(x=-\frac{9}{2}\)
\(\Rightarrow x=\left\{\frac{1}{2};-\frac{9}{2}\right\}\)
1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)
\(\frac{x}{-5}=\frac{8}{10}\)
\(x=\frac{8}{10}\cdot-5\)
\(x=-4\)
\(\frac{20}{x}=\frac{-6}{30}\)
\(x=20:\frac{-6}{30}\)
\(x=-100\)
\(\frac{25}{-10}=\frac{x}{4}\)
\(x=\frac{25}{-10}\cdot4\)
\(x=-10\)
a) \(3x-\frac{3}{2}-5x+\frac{10}{3}=1\)
\(3x-5x=1+\frac{3}{2}-\frac{10}{3}\)
\(-2x=-\frac{5}{6}\)
\(x=\frac{5}{12}\)
b) \(\left|x-1\right|=5-x\)
Th1:
\(x-1=5-x\)
\(x+x=5+1\)
\(2x=6\)
\(x=3\)
Th2:
\(-\left(x-1\right)=5-x\)
\(x+1=5-x\)
\(x+x=5-1\)
\(2x=4\)
\(x=2\)
Vậy \(x=3\)và \(x=2\)
a) 3x - 5x = 1 + 3/2 - 10/3
-2x = -5/6
x = -5/6 : ( - 2 )
x = 5/12
b) |x-1|= 5-x
Nếu x \(\ge\)1 \(\Rightarrow\)x - 1 \(\ge\)0 \(\Rightarrow\)x - 1 = 5 - x.
2x = 6
x = 3.
Nếu x < 1 \(\Rightarrow\)x - 1 < 0 \(\Rightarrow\)Ix-1I = 1 - x
\(\Rightarrow\)1 - x = 5 - x \(\Rightarrow\)vô lý.
Vậy x = 3
a) -1/8 -2x/5-1/3=3
-2x/5=3+1/8+1/3
-2x/5=83/24
-2x=(83×5)/24=415/24
x = (415÷-2)/24= -415/48
b) -7/3 -(25/6 -4/3+ 3/2)
= -7/3 -13/3 = -20/3
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+....+\frac{1}{6561}\)
\(\Rightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{2187}\)
\(\Rightarrow\)\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{2187}\right)-\left(\frac{1}{3}+\frac{1}{9}+....+\frac{1}{6561}\right)\)
\(\Rightarrow\)\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)
\(\Rightarrow\)\(A=\frac{3280}{6561}\)