Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giá trị gần đúng của \(1,{02^5}\) là:
\({1^5} + {5.1^4}.0,02 = 1,1\)
b) \(1,{02^5} = 1,104\)
Sai số tuyệt đối là: 1,104 - 1,1 = 0,004
a) Dùng phân số \(\frac{{22}}{7}\) để xấp xỉ cho \(\pi \) tức là \(\pi \)là số đúng, \(\frac{{22}}{7}\) là số gần đúng.
b) Ta có: \(3,1415 < \pi < 3,1416\)
\(\begin{array}{l} \Rightarrow \frac{{22}}{7} - 3,1415 > \frac{{22}}{7} - \pi > \frac{{22}}{7} - 3,1416\\ \Leftrightarrow 0,001357 > \frac{{22}}{7} - \pi > 0,001257\\ \Rightarrow \Delta = \left| {\frac{{22}}{7} - \pi } \right| < 0,001357\end{array}\)
Vậy sai số tuyệt đối không quá \(0,001357\)
Sai số tương đối là \(\delta = \frac{\Delta }{{\frac{{22}}{7}}} < \frac{{0,001357}}{{\frac{{22}}{7}}} \approx 0,03\% \)
- Dùng máy tính ta có: ∛12 ≈ 2,289428485.
- Làm tròn đến 3 chữ số phần thập phân là: ∛12 ≈ 2,289.
- Sai số tuyệt đối: Δα = |2,289 – ∛12 | < |2,289 – 2,2895| < 0,0005.
Vậy sai số tuyệt đối không vượt quá 0,0005.
Đáp án: A
Sai số tuyệt đối của 0,57 là: |4/7 - 0,57| ≈ 0,001.
a)
Sai số tuyệt đối là: \(\Delta = \left| {e - 2,7} \right| = \;|2,718281828459 - 2,7|\; = 0,018281828459 < 0,02\)
Sai số tương đối là: \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} < \frac{{0,02}}{{2,7}} \approx 0,74\% \)
b) Quy tròn e đến hàng phần nghìn ta được: 2,718.
c)
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,00002 là hàng phần trăm nghìn.
Quy tròn e đền hàng phầm trăm nghìn ta được 2,71828
a) Áp dụng công thức nhị thức Newton, ta có:
\(\begin{array}{l}{\left( {1 + x} \right)^4} = {1^4} + C_4^1{.1^3}x + C_4^2{.1^2}{x^2} + C_4^3.1{x^3} + C_4^4{x^4}\\ = 1 + 4x + 6{x^2} + 4{x^3} + {x^4}\end{array}\)
\(\begin{array}{l}{\left( {1 - x} \right)^4} = {1^4} + C_4^1{.1^3}\left( { - x} \right) + C_4^2{.1^2}{\left( { - x} \right)^2} + C_4^3.1{\left( { - x} \right)^3} + C_4^4{\left( { - x} \right)^4}\\ = 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\end{array}\)
Suy ra
\(\begin{array}{l}{\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 1 + 4x + 6{x^2} + 4{x^3} + {x^4} + 1 - 4x + 6{x^2} - 4{x^3} + {x^4}\\ = 2 + 12{x^2} + 2{x^4}\end{array}\)
Vậy \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\)
Ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4}\)
Áp dụng biểu thức vừa chứng minh \({\left( {1 + x} \right)^4} + {\left( {1 - x} \right)^4} = 2 + 12{x^2} + 2{x^4}\)
ta có: \(1,{05^4} + 0,{95^4} = {\left( {1 + 0,05} \right)^4} + {\left( {1 - 0,05} \right)^4} = 2 + 12.0,0{5^2} + 2.0,0{5^4}\\ = 2,0300125\)
a) Dạng chuẩn của số π với 10 chữ số chắc là 3,141592654 với sai số tuyệt đối ∆π≤ 10-9.
b) Viết π ≈ 3,14 ta mắc phải sai số tuyệt đối không quá 0,002. Trong cách viết này có 3 chữ số đáng tin.
Viết π ≈ 3,1416 ta mắc phải sai số tuyệt đối không quá 10-4. Viết như vậy thì số π này có 5 chữ số đáng tin.
π = 3,14159265358…
+ Viết b = 3,14 :
Sai số tuyệt đối : |b – π| < |3,14 – 3,14159265358| < 0,0016
Vậy sai số tuyệt đối của b không quá 0,0016.
+ Viết c = 3,1416 :
Sai số tuyệt đối : |c – π| < |3,1416 – 3,14159265358| = 0,00001.
Vậy sai số tuyệt đối của c không vượt quá 0,00001.
a) Giá trị gần đúng của \(1,{05^4}\) là: \({1^4} + {4.1^3}.0,05 = 1,2\)
b) \(1,{05^4} = 1,2155\)
Sai số tuyệt đối là: 1,2155 - 1,2 = 0,0155