Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Dùng máy tính ta có: ∛12 ≈ 2,289428485.
- Làm tròn đến 3 chữ số phần thập phân là: ∛12 ≈ 2,289.
- Sai số tuyệt đối: Δα = |2,289 – ∛12 | < |2,289 – 2,2895| < 0,0005.
Vậy sai số tuyệt đối không vượt quá 0,0005.
Nếu lấy \(\sqrt{3}\) bằng \(1,73\) thì vì \(1,73< \sqrt{3}=1,7320508...< 1,74\) nên ta có \(\left|\sqrt{3}-1,73\right|< \left|1,73-1,74\right|=0,01\)
Vậy sai số tuyệt đối trong trường hợp này không vượt quá \(0,001\)
Nếu lấy \(\sqrt{3}\) bằng \(1,7321\) thì sai số tuyệt đối không vượt quá 0,0001
Nếu 3 bằng 1,73 thì vì 1,73 < 3 = 1,7320508... < 1,74 nên ta có
| 3 - 1 , 73 | < | 1 , 73 - 1 , 74 | = 0 , 01
– Làm tròn với hai chữ số thập phân: ∛5 = 1,71.
Sai số tuyệt đối: |1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
– Làm tròn với ba chữ số thập phân: ∛5 = 1,710
Sai số tuyệt đối: |1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
– Làm tròn với bốn chữ số thập phân: ∛5 = 1,7100
|1,71 – ∛5| < |1,71 – 1,7099| = 0,0001.
Vậy sai số tuyệt đối không vượt quá 0,0001.
a) Giá trị gần đúng của \(1,{05^4}\) là: \({1^4} + {4.1^3}.0,05 = 1,2\)
b) \(1,{05^4} = 1,2155\)
Sai số tuyệt đối là: 1,2155 - 1,2 = 0,0155
a) Giá trị gần đúng của \(1,{02^5}\) là:
\({1^5} + {5.1^4}.0,02 = 1,1\)
b) \(1,{02^5} = 1,104\)
Sai số tuyệt đối là: 1,104 - 1,1 = 0,004