K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2019

b) 

Ta có: \(ab-ac+bc-c^2=-1\Leftrightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Leftrightarrow\left(a+c\right)\left(b-c\right)=-1\) (1)

Vì a, b, c nguyên

=> a+c nguyên và b-c nguyên 

Từ đó suy ra có hai trường hợp xảy ra

TH1:  a+c=1 và b-c=-1 => a+b =0 => a, b đối nhau

TH2: a+c=-1 và b-c=1 => a+b =0 => a, b đối nhau

Vậy a, b đối nhau

5 tháng 6 2017

dễ

Ta có : 

ab - ac + bc - c2 = -1

\(\Leftrightarrow\)a . ( b - c ) + c . ( b - c ) = -1

\(\Leftrightarrow\)( b - c ) . ( a + c ) = -1

\(\Leftrightarrow\)b - c và a + c phải khác dấu tức là b - c = - ( a + c )

\(\Leftrightarrow\)b - c = -a - c

\(\Leftrightarrow\)b = -a

Vậy a và b là hai số đối nhau

4 tháng 1 2016

 

ab -ac + bc- c2 = -1

=>a.(b-c)+c.(b-c)=-1

=>(b-c)(a+c)=-1=1.(-1)=(-1).1

=>b-c=1 và a+c=-1 hoặc b-c=-1 và a+c=1

=>*b=1+c và a=-1-c=-(1+c)

=> a và b là 2 số đối nhau

* b=-1+c và a=1-c=-(-1+c)

=>a và b là 2 số đối nhau

Vậy a và b là 2 số đối nhau

21 tháng 1 2016

bạn nhấn vào  đúng 0 sẽ ra đáp án

21 tháng 1 2016

Bạn giải bài toán đó đi đã rồi mình bấm đúng 0

 

31 tháng 3 2017

\(ab-ac+bc-c^2=-1\)

\(a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\left(a+c\right)\left(b-c\right)=-1\)

Vì \(a,b,c\in Z\Rightarrow a+c,b-c\in Z\)

\(\Rightarrow a+c,b-c\inƯ\left(-1\right)\)

*Lập bảng

a+c-11
b-c1-1
a-(1+c)1-c
b1+c-(1-c)

Vậy nếu ab-ac+bc-c2=-1 thì a và b là 2 số đối nhau