K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

+) Vì hình hộp ABCD.A'B'C'D' có các cạnh bằng nhau nên tứ giác A'B'C'D'; ADD'A'; CC'D'D là hình thoi.

+) AB' // C'D và C'D \( \bot \) CD' nên AB' \( \bot \)CD'

+) AC // A'C' và A'C' \( \bot \) B'D' nên AC \( \bot \) B'D'

+) B'C // A'D và A'D \( \bot \) AD' nên B'C \( \bot \) AD'

Vậy ta đã chứng minh được rằng tứ diện ACB'D' có các cặp cạnh đối diện vuông góc với nhau.

28 tháng 8 2016

ét hai n-giác đều: A1A2..An và A'1A'2..A'n 
=> số đo các góc đều bằng nhau = 180(n-2)/n 

hai tgiác A1A2A3 và A'1A'2A'3 bằng nhau 
=> tồn tại duy nhất phép dời D: (A1A2A3) --> (A'1A'2A'3) 
do phép dời bảo toàn độ lớn của góc (kể cả hướng góc) và khoảng cách 2 điểm 
=> qua D: A4 --> A'4 
Có thể làm rõ hơn là gọi D: A4 --> A''4 
có A3A4 = A'3A''4 và góc định hướng A2Â3A4 = A'2Â'3A''4 
=> A''4 ≡ A'4 
tương tự qua D: An --> A'n 
=> D: (A1A2..An) --> (A'1A'2..A'n) 
=> A1A2..An = A'1A'2..A'n

4 tháng 10 2017

Chọn D

Cách 1:

 

Gọi các điểm được đánh dấu để chia đều các cạnh của tứ diện đều ABCD như hình vẽ.

+ Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Số phần tử của S là số cách chọn ra 3 điểm không thẳng hàng trong số 18 điểm đã cho.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách.

Chọn ra 3 điểm thẳng hàng trong 18 điểm trên có 6. C 6 3 = 6 cách.

Suy ra số tam giác thỏa mãn là  C 18 3 - 6 = 810

+ Gọi T là tập hợp các tam giác lấy từ ABCD sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện ABCD.

- Chọn 1 cạnh của tứ diện để mặt phẳng chứa tam giác chỉ song song với đúng cạnh đó: có  C 6 1  cách.

Xét các tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD, suy ra tam giác đó phải có một cạnh song song với BD.

- Có 6 cách chọn cạnh song song với BD là

- Giả sử ta chọn cạnh  M 2 N 2  là cạnh của tam giác. Cần chọn đỉnh thứ 3 của tam giác trong 16 điểm còn lại. 

Do  M 2 N 2 ⊂ (ABD) mà mặt phẳng chứa tam giác song song với BD nên đỉnh thứ 3 không thể là 7 điểm còn lại nằm trong mp(ABD).

Do mặt phẳng chứa tam giác chỉ song song với BD nên đỉnh thứ 3 không được trùng với một trong ba điểm E 2 ,   F 2 ,   P 2 . Vậy đỉnh thứ 3 chỉ được chọn trong 16 -7 - 3 = 6 điểm còn lại.

Suy ra có 6 tam giác có 1 cạnh là  M 2 N 2 và mặt phẳng chứa nó chỉ song song với BD.

Vậy số tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD là: 6.6 = 36.

Tương tự cho các trường hợp khác, ta có số tam giác mà mặt phẳng chứa nó chỉ song song với đúng một cạnh của tứ diện ABCD là: 36.6 = 216.

Vậy xác suất cần tìm là 

Cách 2: Lưu Thêm

+) Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.

Chọn ra 3 điểm trong 18 điểm trên: có  C 18 3  cách. 

Trong số  C 18 3  đó, có 6 cách chọn ra 3 điểm thẳng hàng trên các cạnh.

Suy ra n(S) =  C 18 3 - 6 = 810

+) Xét phép thử: “Lấy ngẫu nhiên một phần thử thuộc S”. Ta có

+) Gọi T là biến cố: “Mặt phẳng chứa tam giác được chọn song song với đúng một cạnh của tứ diện đã cho”.

Chọn một cạnh của tứ diện: 6 cách, (giả sử chọn AB).

Chọn đường thẳng song song với AB: 6 cách, (giả sử chọn PQ).

Chọn đỉnh thứ 3: 6 cách, (M, N, E, K, F, I).

Suy ra n(T) = 6.6.6 = 216

Vậy 

25 tháng 5 2017

Do \(d\perp\left(ABC\right)\) nên \(MN\perp BC\)

\(\left\{{}\begin{matrix}MC\perp\left(BOH\right)\\BN\subset\left(BOH\right)\end{matrix}\right.\) \(\Rightarrow MC\perp BN\)

\(\left\{{}\begin{matrix}MB\perp\left(CHO\right)\\CN\subset\left(CHO\right)\end{matrix}\right.\)\(\Rightarrow MB\perp CN\)

25 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Mỗi cặp đường thẳng a, a' và b, b' cùng thuộc một mặt phẳng vì a // a', b // b'.

b) Ta có:

+) OA // O′A′; OO' // AA' nên OAA'O' là hình bình hành.

+) OB // O′B′; OO' // BB' nên OBB'O' là hình bình hành.

+) AB // A′B′ và OO' // AA'; OO' // BB' suy ra AA' // BB' nên ABB'A' là hình bình hành.

c)  Áp dụng định lí côsin cho các tam giác OAB và O'A'B', ta có:

\(\cos \left( {a,b} \right) = \frac{{O{A^2} + O{B^2} - A{B^2}}}{{2.OA.OB}};\cos \left( {a',b'} \right) = \frac{{O'{{A'}^2} + O'{{B'}^2} - A'{{B'}^2}}}{{2.O'A'.O'B'}}\)

Vì O'A' = OA và O'B' = OB; AB = A'B' nên cos(a,b) = cos(a′,b′).