K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

2)

A B C H M D x E

a)

Tam giác AHE có : MD//HE và M là trung điểm AH => MH là đường trung bình tam giác AHE => D là trung điểm AE => AD=ED

b) Tam giác ABC cân tại A nên đường cao AH cũng là đường trung tuyến AH => HB = HC

Tam giác BCD có HE // DC và H là trung điểm BC => HE là đường trung bình tam giác BCD => E là trung điểm DB => DE=EB

=> AD=DE=EB =1/3 AB (đpcm )

c)

Ta có : MD là đường trung bình tam giác AHE => MD =1/2 HE

TT : HE = 1/2 CD

=> MD = 1/4 CD hay CD = 4.MD ( đpcm)

20 tháng 11 2019

bạn vũ minh tuấn chép nguyên của tech 12h ạ

22 tháng 10 2019

Tham khảo nhé:

Câu 1:

Câu 2:

Giải câu 2 trang 119 sách toán VNEN lớp 7 tập 1

Chúc bạn học tốt!

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC
b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//DC và AB=DC

c: Ta có: ABDC là hình bình hành

nên \(\widehat{BAC}=\widehat{BDC}\)

17 tháng 5 2017

Xét tam giác ABD có 

E là trung điểm AD

P là trung điểm BD 

=> EP là đường trung bình của tam giác ABD (1)

Xét tam giác ABC có :

Q là trung điểm AC

F là trung điểm CB

=> QF là đường trung bình của tam giác ABC (2)

Xét tứ giác ABCD có :

Q là trung điểm AC

P là trung điểm BD

=> QP là đường trung bình của tứ giác ABCD (3)

Từ (1) ; (2) ; (3) 

=> Q , F , E , P thẳng hàng 

17 tháng 5 2017

giúp mk luôn b, c đi bạn

1) Chứng minh ΔAMB=ΔCMD

Xét ΔAMB và ΔCMD có

BM=MD(gt)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

AM=MC(do M là trung điểm của AC)

Do đó: ΔAMB=ΔCMD(c-g-c)

2) Chứng minh AB=CD và AB//CD

Ta có: ΔAMB=ΔCMD(cmt)

⇒AB=CD(hai cạnh tương ứng)

Ta có: ΔAMB=ΔCMD(cmt)

\(\widehat{BAM}=\widehat{DCM}\)(hai góc tương ứng)

\(\widehat{BAM}\)\(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

3) Chứng minh E,M,F thẳng hàng

Xét tứ giác AFCE có

AE//FC(AB//CD, E∈AB, F∈CD)

AE=FC(gt)

Do đó: AFCE là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường(định lí hình bình hành)

mà M là trung điểm của AC(gt)

nên M là trung điểm của FE

hay F,M,E thẳng hàng(đpcm)

a: Xét ΔMAD vuông tại M và ΔNBD vuông tại N có

DA=DB

\(\widehat{MAD}=\widehat{NBD}\)

Do đó: ΔMAD=ΔNBD

b: Ta có: ΔMAD=ΔNBD

nên DM=DN và AM=NB

Ta có: CM+MA=CA

CN+NB=CB

mà MA=NB

và CA=CB

nên CM=CN

mà DM=DN

nên CD là đường trung trực của MN

c: Ta có: ΔCAB cân tại C

mà CD là đường trung tuyến

nên CD là đườg trung trực của AB(1)

Xét ΔCAE vuông tại A và ΔCBE vuông tại B có

CE chung

CA=CB

Do đó:ΔCAE=ΔCBE

Suy ra: EA=EB

hay E nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra C,D,E thẳng hàng

31 tháng 3 2020

Trường hợp bằng nhau thứ nhất của tam giác canh - cạnh - cạnh (c.c.c)

31 tháng 3 2020

a)Xét ΔABM và ΔDCM có:

AM=MD

BM=MC

AMB=CMD

=> ΔABM = ΔDCM (c-g-c)

b)Ta có: ΔABM = ΔDCM (cmt)

=> ABM = DCM (2 góc t.ư)

Mà ABM và DCM ở vị trí SLT

=> AB//CD

27 tháng 2 2020

Hình vẽ:

Hình học lớp 7

=> \(AB=CD\) (2 cạnh tương ứng).

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

b) Phải là \(BD\) // \(AC\) nhé.

Xét 2 \(\Delta\) \(AMC\)\(DMB\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMC}=\widehat{DMB}\) (vì 2 góc đối đỉnh)

\(MC=MB\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMC=\Delta DMB\left(c-g-c\right)\)

=> \(\widehat{ACM}=\widehat{DBM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD.\)

c) Vì \(\widehat{ABM}=\widehat{DCM}\left(cmt\right)\)

=> \(\widehat{ABC}=\widehat{DCB}.\)

Xét 2 \(\Delta\) \(ABC\)\(DCB\) có:

Chúc bạn học tốt!

10 tháng 12 2019
https://i.imgur.com/TVKqgRS.jpg
10 tháng 12 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(AMB\)\(DMC\) có:

\(AM=DM\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta AMB=\Delta DMC.\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

Chúc bạn học tốt!

Bài 1: 

a: Xét ΔCAB và ΔCDE có

CA=CD

góc ACB=góc DCE

CB=CE

Do đó: ΔCAB=ΔCDE
b: Xét tứ giác ABDE có

C là trung điểm chung của AD và BE

nên ABDE là hình bình hành

Suy ra: AB//DE

c: Xét tứ giác BEDF có

BE//DF

BF//DE

Do đó: BEDF là hình bình hành

Suy ra: BE=DF