Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:\(\dfrac{a}{b}=\dfrac{c}{d}=@\Leftrightarrow\left\{{}\begin{matrix}a=b@\\c=d@\end{matrix}\right.\)
khi đó: \(\dfrac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\dfrac{b^{2017}@^{2017}+b^{2017}}{d^{2017}@^{2017}+d^{2017}}=\dfrac{b^{2017}\left(@^{2017}+1\right)}{d^{2017}\left(@^{2017}+1\right)}=\dfrac{b^{2017}}{d^{2017}}\)
\(\dfrac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\dfrac{\left(b@-b\right)^{2017}}{\left(d@-d\right)^{2017}}=\dfrac{\left[b\left(@-1\right)\right]^{2017}}{\left[d\left(@-1\right)\right]^{2017}}=\dfrac{b^{2017}}{d^{2017}}\)
Ta có điều phải chứng minh
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{b^{2017}\cdot k^{2017}+d^{2017}\cdot k^{2017}}{b^{2017}+d^{2017}}=k^{2017}\)
\(\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}=\dfrac{\left(bk+dk\right)^{2017}}{\left(b+d\right)^{2017}}=k^{2017}\)
Do đó: \(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
\(a+b+c=2017\Rightarrow A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-b}+\dfrac{c}{a+b+c-a}\)
\(A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow A< 2\left(1\right)\)
\(A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow A>1\left(2\right)\)
từ (1) và (2) \(\Rightarrow1< A< 2\)
vay A \(\notin Z\)
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(1\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Thay vào tính
Từ gt => (a+c)(b-d)=(b+d)(a-c)
nên ab+bc-ad-cd=ab+ad-bc-cd => 2bc=2ad => bc=ad
=> \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a^{2017}}{b^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\)(theo t/c dãy tỉ số bằng nhau)
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(2\right)\)
Từ (1) và (2) ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-d^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\left(3\right)\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^{2017}=\dfrac{a^{2017}}{b^{2017}}=\dfrac{b^{2017}k^{2017}}{b^{2017}}=k^{2017}\left(4\right)\)
Từ (3) và (4) ta có:
\(\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)
\(\Rightarrowđpcm\)
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{2a}{2b}=\dfrac{2c}{2d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{\left(bk\right)^{2017}-\left(dk\right)^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-k^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\left(1\right)\)
Mà \(k=\dfrac{a}{b}\Rightarrow k^{2017}=\left(\dfrac{a}{b}\right)^{2017}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)