Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:\(\dfrac{a}{b}=\dfrac{c}{d}=@\Leftrightarrow\left\{{}\begin{matrix}a=b@\\c=d@\end{matrix}\right.\)
khi đó: \(\dfrac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\dfrac{b^{2017}@^{2017}+b^{2017}}{d^{2017}@^{2017}+d^{2017}}=\dfrac{b^{2017}\left(@^{2017}+1\right)}{d^{2017}\left(@^{2017}+1\right)}=\dfrac{b^{2017}}{d^{2017}}\)
\(\dfrac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\dfrac{\left(b@-b\right)^{2017}}{\left(d@-d\right)^{2017}}=\dfrac{\left[b\left(@-1\right)\right]^{2017}}{\left[d\left(@-1\right)\right]^{2017}}=\dfrac{b^{2017}}{d^{2017}}\)
Ta có điều phải chứng minh
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{b^{2017}\cdot k^{2017}+d^{2017}\cdot k^{2017}}{b^{2017}+d^{2017}}=k^{2017}\)
\(\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}=\dfrac{\left(bk+dk\right)^{2017}}{\left(b+d\right)^{2017}}=k^{2017}\)
Do đó: \(\dfrac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\dfrac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)
Ta có:
b2=a.c c2=b.d
\(\Rightarrow\frac{b}{c}=\frac{a}{b}\) \(\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) (1)
\(\Rightarrow\hept{\begin{cases}\left(1\right)=\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}\\\left(1\right)=\frac{a+b-c}{b+c-d}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\end{cases}}\)
\(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Vậy \(\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)
Ta có: \(b^2=a\cdot c\Rightarrow\frac{a}{b}=\frac{b}{c}\left(1\right)\)
\(c^2=b\cdot d\Rightarrow\frac{b}{c}=\frac{c}{d}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2017}}{b^{2017}}=\frac{b^{2017}}{c^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}\)(3)
Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b-c}{b+c-d}\)
\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(4)
Từ (3) và (4) \(\Rightarrow\frac{a^{2017}+b^{2017}-c^{2017}}{b^{2017}+c^{2017}-d^{2017}}=\frac{\left(a+b-c\right)^{2017}}{\left(b+c-d\right)^{2017}}\)(đpcm)
bài này dễ vào TH 0,5 điểm trong bài thi
nghe có vẻ khó nhưng chú ý 1 chút là có thể làm được
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^{2016}}{c^{2016}}=\frac{b^{2016}}{d^{2016}}\)\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}\)
áp dụng t/c dãy t/s = nhau
\(\Rightarrow\left(\frac{a^{2016}}{c^{2016}}\right)^{2017}=\left(\frac{b^{2016}}{d^{2016}}\right)^{2017}=\)\(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}\)
biến đổi tiếp cái kia tương tự rồi suy ra chúng = nhau nhé
casi phần áp dụng tc thì phải bằng (a^2016)^2017+(b^2016)^2017 chớ nhỉ bạn hỏi đáp
vì \(\frac{a}{b}\)=\(\frac{c}{d}\)=>\(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\)
áp dụng tính chất dãy tỉ số bằng nhau
=> \(\frac{a^{2017}}{b^{2017}}\) =\(\frac{c^{2017}}{d^{2017}}\)= \(\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}\)=\(\frac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}\)=\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)(diều phải chứng minh
Từ \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra a=bk
c=dk
Ta có
\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(bk\right)^{2017}+b^{2017}}{\left(dk\right)^{2017}+d^{2017}}=\frac{b^{2017}.k^{2017}+b^{2017}}{d^{2017}.k^{2017}+d^{2017}}=\frac{b^{^{2017}}\left(k^{2017}+\right)}{d^{2017}\left(k^{2017}+1\right)}=\frac{b^{2017}}{d^{2017}}\)(1)
Ta có
\(\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}=\frac{\left(bk-b\right)^{2017}}{\left(dk-d\right)^{2017}}=\frac{\left(b\left(k-1\right)\right)^{2017}}{\left(d\left(k-1\right)\right)^{2017}}=^{\frac{b^{2017}}{d^{2017}}}\)(2)
Từ (1) và (2)
Ta suy ra
\(\frac{a^{2017}+b^{2017}}{c^{2017}+d^{2017}}=\frac{\left(a-b\right)^{2017}}{\left(c-d\right)^{2017}}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\frac{a^{2017}}{b^{2017}}=\frac{c^{2017}}{d^{2017}}=\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\frac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)
\(\Rightarrow\frac{a^{2017}+c^{2017}}{b^{2017}+d^{2017}}=\frac{\left(a+c\right)^{2017}}{\left(b+d\right)^{2017}}\)