K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a) Ta có: ab = 132 = 12.11 ( thỏa mãn điều kiện a+b = 23)

 => a2 + b2 = 122 + 112 = 144 + 121 = 265

23 tháng 6 2017

a) Ta có:

\(a^2+b^2=\left(a+b\right)^2-2ab=23^2-2.132=265\)

b) Ta có:

\(x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1\)

23 tháng 6 2017

b,Ta có:

\(x+y=1\Rightarrow x=1-y\)(1)

Thay (1) vào biểu thức cần tìm ta có:

\(\left(1-y\right)^3+3\left(1-y\right)y+y^3\)

\(=1-3y+3y^2-y^3+3\left(y-y^2\right)+y^3\)

\(=1-3y+3y^2-y^3+3y-3y^2+y^3\)

\(=1\)

Vậy.....

Chúc bạn học tốt!!!

4 tháng 11 2019

Lê Đức Huy sai rồi bạn phải là x2-y-y2-x=0 chứ bạn

16 tháng 8 2020

Lê Nhật Minh này! Bạn k bt thì đừng nói. Có phải bài nào cx giống nhau đâu, mak có thế thì bạn cx sai

4 tháng 10 2019

Ta co:

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

Dau '=' xay ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\)

Ta lai co:

\(\frac{x^6}{a^3}+\frac{y^6}{b^3}=\left(\frac{x^2}{a}\right)^3+\left(\frac{y^2}{b}\right)^3=2\left(\frac{x^2}{a}\right)^3\)

Ma \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow x^2=\frac{a}{a+b}\)

\(\Leftrightarrow\frac{x^2}{a}=\frac{1}{a+b}\)

\(\Leftrightarrow\left(\frac{x^2}{a}\right)^3=\frac{1}{\left(a+b\right)^3}\)

\(\Rightarrow\frac{x^6}{a^3}+\frac{y^6}{b^3}=\frac{2}{\left(a+b\right)^3}\)

12 tháng 6 2018

\(a)\) Ta có : 

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\Rightarrow\)\(a^2+b^2=\left(a+b\right)^2-2ab\)

Thay \(a+b=23\) và \(ab=132\) vào \(a^2+b^2=\left(a+b\right)^2-2ab\) ta được : 

\(a^2+b^2=23^2-2.132\)

\(a^2+b^2=529-264\)

\(a^2+b^2=265\)

Vậy \(a^2+b^2=265\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

a,\(a^2+b^2=\left(a+b\right)^2-2ab\)

thay a+b=23 và ab=132 vào tính nhé

b,theo đề ra ta có \(x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)(1)

                                                                                      thay x+y=1 vào  (1)

ta đc \(x^3+y^3+3xy=1\)

bài 2

theo đề ra ta có           \(\left(m+n+p\right)^2=255\Leftrightarrow m^2+n^2+p^2+2\left(mn+np+mp\right)=225\)(1)

                                                                                         thay \(m^2+n^2+p^2=77\) vào(1)

                                                                   =>mn+np+mp=74

22 tháng 10 2016

Đề là gì z

22 tháng 10 2016

bài 1 là tìm x

 

a) \(A=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)

b) \(B=x^2+y^2=x^2-y^2+2xy-2xy=\left(x-y\right)^2+2xy=9+2.10=29\)

c) \(C=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)

d) \(D=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=-27+3.10.\left(-3\right)=-27-90=-117\)

17 tháng 12 2016

1/ \(a+b+c=11\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)

\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)

2/ \(a^3+b^3+a^2c+b^2c-abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)

\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)

3/ \(x^4+3x^3y+3xy^3+y^4\)

\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)

\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)

18 tháng 12 2016

bạn alibaba nguyễn có thể làm lại giúp mình được không ?

20 tháng 8 2023

 Ta có:

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1^3\)

\(\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)

\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)

\(\Rightarrow x^3+3xy\cdot1+y^3=1\)

\(\Rightarrow x^3+3xy+y^3=1\)

Vậy: \(x^3+3xy+y^3=1\)