Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
=>n(n+1)=1275
=>n^2+n-1275=0
=>\(n\in\varnothing\)
Câu 2:
a: Gọi d=ƯCLN(2n+1;3n+1)
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+1;3n+1)={1;-1}
b: Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hết cho d
=>1 chia hết cho d
=>d=1
=>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
Gọi ƯCLN (4n+3;5n+1) = d ( d thuộc N sao )
=> 4n+3 và 5n+1 đều chia hết cho d
=> 5.(4n+3) và 4.(5n+1) chia hết cho d
=> 20n+15 và 20n+4 đều chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc {1;11}
Mà a và b ko phải 2 số tự nhiên nguyên tố cùng nhau nên d khác 1
=> d = 11
=> ƯCLN (a,b) =11
Tk mk nha
Ta có; 4n+3=> 5.[4n+3]=>20n+15 Gọi UCLN(a, b) là d
5n+1=>4.[5n+1]=> 20n+4
=>d= [20n+15 ] - [ 20n+4] chia hết cho 11
=>d=11 [ vì a,b là 2 số thuộc N ko nguyên tố cùng nhau]
a/GỌI ƯCLN CỦA A VÀ B LÀ D
ƯCLN (4n+3;5n+1)=D
suy ra {4n+3 chia hết cho D
{5n+1 chia hết cho D
suy ra{5(4n+3) chia hết cho D
{4(5n+1) chi hết cho D
suy ra 5(4n+3)-4(5n+1) chia hết cho D
suy ra (20n+3)-(20n+1) chia hết cho D
suy ra 3 - 1 chia hết cho D
suy ra 2 chia hết cho D
SUY RA D thuộc Ư(2)
suy ra D =2 (tm đề bài)
VẬY ƯCLN của (a;b) = 2
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt
a) Gọi 2 số lẻ liên tiếp là 2n+ 1; 2n+ 3.
Gọi( 2n+ 1; 2n+ 3)= d.
=> 2n+ 1\(⋮\) d; 2n+ 3\(⋮\) d.
=>( 2n+ 3)-( 2n+ 1)\(⋮\) d.
=> 2n+ 3- 2n- 1\(⋮\) d.
=> 2\(⋮\) d.
=> d\(\in\){ 1; 2}.
Mà 2n+ 1 không\(⋮\) 2.
=> d= 1.
=>( 2n+ 1; 2n+ 3)= 1.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
b) Gọi( 2n+ 5; 3n+ 7)= d.
=> 2n+ 5\(⋮\) d; 3n+ 7\(⋮\) d.
Ta có: 2n+ 5\(⋮\) d.
=> 3( 2n+ 5)\(⋮\) d.
=> 6n+ 15\(⋮\) d( 1).
3n+ 7\(⋮\) d.
=> 2( 3n+ 7)\(⋮\) d.
6n+ 14\(⋮\) d( 2).
Từ( 1) và( 2), ta có:
( 6n+ 15)-( 6n+ 14)\(⋮\) d.
=> 6n+ 15- 6n- 14\(⋮\) d.
=> 1\(⋮\) d.
=> d= 1.
=>( 2n+ 5; 3n+ 7)= 1.
Vậy 2n+ 5 và 3n+ 7 nguyên tố cùng nhau.
a, Đặt d = ƯCLN(2n+3;4n+8)
=> 2(2n+3) ⋮ d; (4n+8) ⋮ d
=> [(4n+8) – (4n+6)] ⋮ d
=> 2 ⋮ d => d ⋮ {1;2}
Mặt khác 2n+3 là số lẻ nên d ≠ 2.
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau
b, Đặt d = ƯCLN(2n+5;3n+7)
=> 3(2n+5) ⋮ d; 2(3n+7) ⋮ d
=> [(6n+15) – (6n+14)] ⋮ d
=> 1 ⋮ d => d = 1
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.
c, Đặt d = ƯCLN(7n+10;5n+7)
=> 5(7n+10) ⋮ d; 7(5n+7) ⋮ d
=> [(35n+50) – (35n+49)] ⋮ d
=> 1 ⋮ d => d = 1
Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau
a) Gọi d là ƯC( 7n + 10 ; 5n + 7 )
=> \(\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
=> ( 35n + 50 ) - ( 35n + 49 ) chia hết cho d
=> 35n + 50 - 35n - 49 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN( 7n + 10 ; 5n + 7 ) = 1
=> 7n + 10 ; 5n + 7 là hai số nguyên tố cùng nhau ( đpcm )
b) Gọi d là ƯC( 2n + 3 ; 4n + 8 )
=> \(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
=> ( 4n + 8 ) - ( 4n + 6 ) chia hết cho d
=> 4n + 8 - 4n - 6 chia hết cho d
=> 2 chia hết cho d
=> d ∈ { 1 ; 2 }
Với d = 2 => \(2n+3⋮̸̸d\)
=> d = 1
=> ƯCLN( 2n + 3 ; 4n + 8 ) = 1
=> 2n + 3 ; 4n + 8 là hai số nguyên tố cùng nhau ( đpcm )
a) 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất bằng 1. Vì a và b là 2 số nguyên tố cùng nhau nên ƯCLN(a ; b) = 1
b) Gọi d là ƯCLN(2n + 5 ; 3n + 7)
Vì d là ƯCLN(2n + 5 ; 3n + 7) nên :
2n + 5 chia hết cho d => (2n + 5) x 3 = 6n + 15 chia hết cho d
3n + 7 chia hết cho d => (3n + 7) x 2 = 6n + 14 chia hết cho d
Hiển nhiên 2 số liên tiếp có ước chung lớn nhất là 1. Mà 6n + 15 và 6n + 14 là 2 số liên tiếp nên 6n + 15 và 6n + 14 có ước chung lớn nhất là 1 => d = 1 ( không có d lớn hơn hay nhỏ hơn ngoài d = 1)
Mà d là ƯCLN(2n + 5 ; 3n + 7) nên 1 là ƯCLN(2n + 5 ; 3n + 7) nên 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau
K NHA BẠN IU